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Abstract-——The paper is concerned with the velocity boundary layer when the fluid properties are
uniform and mass is transferred in either direction through the wall boundary. The “similar” form
of the velocity equation is used to examine the asymptotic behaviour of boundary-layer functions for
large mass-transfer rates. The values of the thickness ratios Hys, Hiz and H,, for intensive blowing
are tabulated.

The method used for integrating the equation on a computer is described, and the following numeri-
cal solutions are given. (1) Accurate solutions for 8 = 1, the forward stagnation point for two-dimen-
sional flow, the mass-transfer parameter f, being given the thirteen values —3-0 (0-5) 3-0. (2) Accurate
solutions for 8 = —1 in the real domain; the mass-transfer parameter f; takes eight values from
42 at the separation point to 4/ 10, which is approaching asymptotic suction. (3) Solutions of slightly
lower accuracy in the real domain for zero mass transfer when B has large values. (4) Interpolated
solutions when B is infinite, which include the effect of mass transfer; for this set both real and

imaginary values of the variables are included.

Curves are drawn showing the variation with pressure gradient of the rate-of-growth function Fe
and the thickness ratio Hs for mass-transfer rates in the range 0 < (vg 32/v) < 20-0. In an Appendix,
formulae are given for evaluating high-order derivatives of the stream function.

NOMENCLATURE

Where the quantities in the following list have
dimensions these are given in brackets after the

f(lna

second derivative of f with respect to
evaluated at the wall boundary; a
measure of the shear stress at the wall;

definitions; otherwise they are dimensionless. /. the real form of f in the imaginary
The symbols used in Appendices B and C are domain, defined in equation (21);
not included. fo»  the real form of f, in the imaginary
domain, related to the velocity v, by
C, constant occurring in equation (7); equation (24);
E,, a correction to the linear approximation H,,, ratio of displacement to momentum
for the relationship between F, and A, boundary-layer thickness; for similar
when mass transfer is zero, defined by solutions defined by equation (40);
equation (101); H,,, ratio of displacement to shear boundary-
F,, function giving the rate of growth of the layer thickness; for similar solutions it
momentum thickness with distance x, is 83/8;;
defined in equation (44); H,,, ratio of momentum to shear boundary-
f,  dimensionless stream function defined layer thickness; for similar solutions
by equation (17); defined by equation (41);
fo» value of f at the wall boundary; a k. mass-transfer parameter for the case

measure of the rate at which mass flows
through the wall and related to the
velocity vy by equation (20);
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when 8 is infinite (see Section 2.3);
related to the velocity v, by equation
(26);
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the real form of 4k, in the imaginary
domain, related to the velocity r, by
equation (33);

value of (1 — #)/8" in the main-stream.
related to the parameter k, by equation
(106);

value of (1 — /6" in the main-stream.
related to the parameter &, by equation
(108);

constant occurring in equation (7):
velocity component parallel to the wall
(ft/h);

value of u in the main-stream (ft/h):
velocity component perpendicular to the
wall (ft/h);

value of v at the wall (ft/h);

distance parallel to the wall measured
from the start of the boundary layer (ft):
distance perpendicular to the wall
measured from the wall towards the
main-stream (ft).

Greek symbols

&

4

Lo

parameter occurring in the similar form
of the velocity equation; defined by
equation (15);

displacement boundary-layer thickness
= J7 (1 — ujuc) dy, (f0);

displacement boundary-layer thickness
in terms of the appropriate similar
length co-ordinate; when the latter is y
it is defined by equation (34);
momentum boundary-layer thickness

= |7 (ufuc) (1 — ufug)dy. (ft);
momentum boundary-layer thickness in
terms of the appropriate similar length
co-ordinate; when the latter is » it is
defined by equation (35);

shear boundary-layer thickness

= uc/(0u/0y)y—o (f1);

shear boundary-layer thickness in similar
co-ordinates; an alternative expression
for 1/fy";

dimensionless stream function defined
by equation (9);

value of { at the wall boundary; a
measure of the rate at which mass flows
through the wall and related to the
velocity r, by equation {14);

/&

¥ o
30

Fae

X1+

X2

dimensionless similar length co-ordinate
defined by equation (16);

real form of » in the imaginary domain:
defined in equation (21);

stream function for the case of infinite £
for real values of the variables, defined
as (£ - o)

real form of 6 when the variables are
pure imaginary, defined in equation (29);
pressure-gradient parameter relating to
the momentum thickness; defined in
equation {43);

kinematic viscosity of fluid (ft2/h);
dimensionless similar length co-ordinate.
defined by equation (8);

real form of ¢ when the variables are
pure imaginary, defined in equation (29);
dimensionless stream function for in-
tensive blowing, defined by equation
(60);

value of ¢ at the wall boundary
dimensionless stream function for in-
tensive suction, defined by equation (46):
dimensionless stream function for in-
tensive blowing for the case when 8 is
infinite, defined by equation (81);
dimensionless similar length co-ordinate
for intensive blowing, defined by equa-
tion (59):

dimensionless similar length co-ordinate
for intensive suction, defined by equa-
tion (45);

dimensionless similar length co-ordinate
for intensive blowing for the case when 3
is infinite, defined by equation (80);
stream function defined by equation (4)
(ft3/h).

1. INTRODUCTION
1.1 Earlier Work

THE first two papers in the present series con-
sidered the velocity equation of the laminar
boundary layer when mass flows in either direc-
tion through the wall boundary. Paper 1.
Spalding [1], presented a method of estimating
boundary-layer thicknesses and the shear stress
at the wall for any two-dimensional, laminar
boundary layer for which the fluid properties are
uniform, provided the distributions along the
wall of the following two quantities are specified:
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(i) the pressure gradient in the main-stream,

and

(i1} the rate at which mass flows through the

wall.
In order to apply this method, “similar” solu-
tions to the boundary-layer equations are
required in the form of numerical tables. For
application to practical problems, these solu-
tions must cover wide ranges in the parameters
specifving the two quantities mentioned above.

All such solutions which could be found in the
literature were tabulated in Paper 2, Spalding
and Evans {2], where it was shown that “similar”
solutions exist both for real and for pure ima-
ginary values of the variables.

Although many solutions were available, they
were fairly widely scattered, most of them occur-
ring in that part of the real domain relating to
accelerated main-streams. Enough solutions were
found in this region to cover much of it by
interpolation between the exact points. By
interpolating for ratios of boundary-layer thick-
nesses. which in this region vary comparatively
slowly with mass-transfer rate, the accuracy was
expected to be better than +0-3 per cent of the
values given.

Work done since Paper 2 was written has
shown that the accuracy of the interpolated
solutions for no mass transfer and for suction
is as good as this estimate. The solutions for
blowing. on the other hand, are less accurate,
the greatest error in the thickness ratios probably
approaching -1 per cent of the values given.
The interpolation procedures involved the use of
the asymptotic values of thickness ratios for
intensive blowing, and a large part of the error
in the interpolated solutions is now thought to be
due to inaccuracy in these asymptotic values.
The latter are given to high accuracy in Table 1
of the present paper.

Wide areas which are of practical interest
were. however, very sparsely covered in the
literature. Except for a series of exact points for
the case of no mass transfer and a few points of
low accuracy for slight deceleration with mass
transfer. the region of decelerated main-streams
contained very few solutions. The imaginary
domain had received even less attention, since
only two solutions, both on the line for no mass
transfer, were known in that region.
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Paper 7, Evans [3], contained some solutions
for the case of no mass transfer in the real
domain which were more accurate than those
given in earlier papers.

1.2 Outline of Present Paper
The present paper is concerned exclusively
with the velocity boundary layer and reports
advances which have been made since the earlier
papers in the series were written. In particular,
a number of similar solutions are given, most
of which are new. These are indicated diagram-

matically on the Fi—A, plane in Fig. 1.

o0&
suction

Az

Fic. 1. Illustrating diagrammatically on the F,-A,
plane the solutions given in the present paper. g—
asymptotic blowing in the real domain (Section 4);
b—asymptotic blowing in the imaginary domain
(Section 4); c—two-dimensional forward stagnation
point, B =1 (Section 6); d—8 = —1 in the real
domain (Section 7); e—high values of 8 for f; = 0in
the real domain (Section 8); f~interpolated solutions
for infinite 8 when variables are pure imaginary
(Section 9); g—interpolated solutions for infinite 8
when variables are real (Section 9).

In section 2 the forms of the similar velocity
equation for real and pure imaginary values of
the variables are given, and section 3 contains
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relationships which are used to evaluate func-
tions required in the present work from tables
of numerical solutions.

Section 4 is concerned with the asymptotic
behaviour of the boundary layer when the rate of
mass transfer through the wall boundary
becomes very large. The case of inward mass
transfer is only briefly discussed, as this has
already received detailed treatment in the
literature. The case of outward mass transfer is
considered in greater detail.

After the asymptotic form of the differential
equation is derived, formulae are obtained for the
asymptotic values of fy" and the thickness ratios
H,,, Hy, and H,,. A table of these ratios is then
given for suitable values of the parameter § in
both the real and the imaginary domains.
These asymptotic solutions are indicated in
Fig. 1 by the radiating lines outside the unit
circle; some values of B have been omitted for
clarity. The real domain is indicated by a and the
imaginary domain by b.

The velocity equation is extremely difficult to
integrate for high rates of outward mass transfer.
It should, however, be easier to integrate the
transformed equation given in section 4, either
by the usual numerical methods or by obtaining
asymptotic expansions in inverse powers of the
mass-transfer parameter f,.

The method used for obtaining numerical
solutions with a computer is described in section
5 and Appendix B.

Solutions for the two-dimensional forward
stagnation point with mass transfer are given in
section 6. Most of these are new and are, in
general, more accurate than the solutions for
this case quoted in Paper 2. These solutions
occur along the line ¢ in Fig. 1.

When 8 = —1, it was found that the wall
shear f,' is a simple function of the mass-
transfer parameter f;,. This meant that solutions
could be obtained on a computer with relative
ease. Solutions in the real domain are given in
section 7 and occur along the line d in Fig. 1; the
imaginary domain for this value of g is not con-
sidered in the present paper.

Section 8 contains solutions in the real domain
for zero mass transfer and high values of the
parameter B. These occur along the line e in
Fig. 1.
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The two cases when 8 is infinite are considered
in section 9. Interpolated solutions are given
which cover a wider range of mass-transfer rate
than those contained in Paper 2. As the solutions
are not to high accuracy, they are represented by
a broken line in Fig. 1, the portion g of this line
indicating the solution for real values of the
variables and the portion f that when the
variables are pure imaginary.

2. FORMS OF THE VELOCITY EQUATION
IN SIMILAR CO-ORDINATES
2.1 Transforming the Co-ordinates
Later parts of the present paper will contain
some discussion of the behaviour of the velocity
boundary layer, and in many places in this
discussion it will be necessary to refer to equa-
tions and quantities which occur in the trans-
formation of the boundary-layer equations to
similar co-ordinates. The transformation, in the
form first given by Spalding [1], is therefore
given below. For further discussion of the
general behaviour of boundary-layer functions
and the roles played by various parameters, the
reader is referred to earlier papers in the series,
particularly Papers 1 and 2.
For two-dimensional, laminar flow with
uniform fluid properties, the equation of motion
for fluid in the boundary layer is:

ou du dug = Pu
Uox TV T T D
and the continuity equation is:
u  0Ov
P + oy 0. (2)
In these equations:
x = distance measured parallel to the wall,
y = distance measured perpendicular to the
wall towards the main-stream,
u = velocity component in the x-direction,
ug = value of u in the main-stream,
r = velocity component in the y-direction,
and
v = kinematic viscosity of the fluid.

When mass flows through the wall with
velocity v,, the boundary conditions associated
with equations (1) and (2) are:
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y =0,
Y=,

u=0,
U~ Ug.

v=ro } 3

The value of v, is positive when in the positive
y-direction.

Equations (1) and (2) are combined by intro-
ducing the stream function ¢ defined by:

o o
u-—a—};, v= s “

so that equation (2) is automatically satisfied and
equation (1) becomes:

op % o o dug | Y )

Ty dxoy  ox o2 MCdx T Veym :
and the boundary conditions from equation (3)
are:

0 o
y:O’ = :0, T’#:_l.o ]
oy ox
L ®
o
¥y = 00, ’aAy > UG. J

Solution of equation (5) with boundary con-
ditions (6) for a general distribution with x of
the functions ug and v, is rarely attempted. For
certain physical configurations known as
“similar” systems, however, these distributions
are such that the equation reduces to an ordinary
differential equation which, although only
rarely soluble analytically, may be integrated
accurately by numerical methods.

It was shown in Paper 1 that equation (5)
possesses similar solutions when the main-
stream velocity obeys the relation:

ax = Cu (M
where C and »n are constants.
If the independent length co-ordinate is taken

as:
1 d 1/2
E=y (— o \) (8)

v dx |

and the new stream function {, which is a
function of £ alone, is related to 4 by:

P (l dug)l’z’

S ©)

377

the velocity components take the form:

el

1/2 d .
r=— (y%}) {;gd—g + (1 —g) c}. a1

(10)

Using the transformation defined by equations
(8) and (9), equation (5) then becomes:

"+ Q0 =) +(1—-0%=0

with boundary conditions:
E=0, (=0, =0
vt (13)

£~ o0,
The primes in equations (12) and (13) denote
differentiation with respect to £.

For similar solutions, the quantity ¢, occur-
ring in equation (13) is a constant. From equa-
tion (11) this is related to the velocity v, at
which mass flows through the wall boundary, by:

~ 1= /2T {v (due/dx) 7

} (14)

so that v, varies along the wall as x"/2.

Equation (12), with boundary conditions (13),
represents one form of the velocity equation in
similar co-ordinates. This will be referred to
later. The form generally found in the literature
and used in the preceding papers of the present
series is obtained by using a slightly different
transformation from that specified by equations
(8) and (9).

If the parameter » is replaced by the parameter
B, defined by:

(12)

_Uo

Lo

1
= 15
R T ) (1)

and the transformation:

1 du(;, 1/2
=Y (;3 cF) (16)
¢ (1 dug)\'?

1= (rﬁ i) a7
is used, equation (5) then takes the familiar

form:

A+ —fH=0 | (18)
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with boundary conditions: —f B~ =0 (22)
n=0. [f=fy f =0 l (19) and the boundary conditions (19) become:
n—oc, fl-1, | ] 5 = 0. /; ::‘/‘;]’ f_’f—:() Vo

where the primes in equations (18) and (19) G, flel, Jk (23)

denote differentiation with respect to 7.

Although boundary conditions (19) are suffi-
cient to define the mathematical problem, other
supplementary conditions are often useful and
sometimes necessary in order to obtain unique
solutions. Two such conditions are:

0 << f’ <1 everywhere, and

: ! L 9a)
=1 exponentially as n — oC. j
The first of these ensures that the solutions con-
form with real boundary layers, since it ex-
cludes solutions involving reversal of flow (i.e.
negative /') as well as those involving velocities
in the boundary layer exceeding that in the
main-stream (i.e. /' > 1). All the solutions
considered in the present series of papers satisfy
this condition.

The second of the supplementary conditions
(19a), which specifies a sufficiently rapid
approach to main-stream flow, is sometimes
required in order to ensure that the solution
is unique.

For the form of the velocity equation given in
equation (18), the relationship corresponding to
equation (14) is:

12 — 1ty

~ VI/B) (duc/dx)T

Most of the following discussion of laminar
boundary layers with mass transfer will refer to
equation (18) with boundary conditions (19).

(20)

2.2 The Form of the Equation in the Imaginary
Domain

When the parameter § and the main-stream
velocity gradient dug/dx have opposite signs in
the transformation defined by equations (16)
and (17), both n and f are pure imaginary. To
obtain the differential equation and boundary
conditions for this imaginary domain, new real
variables 7 and f are defined by:

7 =07
JS=if.

Inserting these into equation (18) gives:

l 2n
J

In equations (22) and (23) the primes denote
differentiation with respect to the new indepen-
dent variable 7.

It is important to realize that in the imaginary
domain f; and v, have the same sign, contrary to
that in the real domain, so that the relationship
corresponding to equation (20) is:

. Uy
B gy Y
2.3 The Equation when B is Infinite

(a) When the variables are real

Consider the relation between the parameter
n in equation (12) and the parameter f in equa-
tion (18). When the parameter »n passes through
the value n = 2, equation (15) shows that 8
undergoes an infinite discontinuity, being large
and positive when n < 2 and large and negative
when n > 2. This case of infinite 8 was shown in
Paper 2 to form the dividing line between the
real and imaginary domains for solutions to
equation (18).

Clearly, equation (18) cannot be used to
evaluate numerical solutions for this case since
the transformations defined by equations (16)
and (17) are not then valid. The appropriate
differential equation for this limiting case can,
however, be deduced from equation (12).

If a new independent variable § = ({ — {,) is
introduced into equation (12), where { is defined
in equation (9) and ¢, in equation (14). since £,
is a constant, the equation becomes:

30 ! 28
d (1 n)Hd

de T2/ 7 de
dzé dey: :
+ ky de ] (df) =0 (25)

where k, is a mass-transfer parameter defined by:

ky = o 0
O v (dug/dx) ¥

The differential equation for infinite 8 is then

(26)
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obtained by putting # = 2 into equation (25),
giving:

d6 do\?
Gethogat1-(g) -0 @
and the boundary conditions associated with it

are:
dé

§ = O¢ 0 == a*é :0
o (28)
& o, Eg—>1.

Equation (27) with boundary conditions (28)
holds when B tends to -oc, from below in
the real domain, or to — o, from above in the
imaginary domain.

When no mass flows through the wall boun-
dary, the parameter k, is zero and so is the
second term in equation (27). The solution for
this case is well-known and accurate values of
the boundary-layer functions were given in
Paper 7. Evans [3].

(b) When the variables are imaginary

When the velocity gradient dug/dx is negative,
the variables £ and { defined in equations (8) and
(9) are pure imaginary. The equation for infinite
B for this case is again obtained by substituting
in equation (27) new variables £ and 8 defined by:

¢ =it } 29)

6 = i
and replacing the constant k, by the constant &,
defined by:

k, = ik,. (30)
This gives:
d3é I3 d‘-*B d9)2
I — = 31
e tRga - (g G
with boundary conditions:
. _ df 1
£ =0, 8 = d? = ()
32
. dé 1 (32)
g - 2, (—1—5_ —

The relationship between the constant &, and the
velocity g is:
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Vg
° = T (dug/dn) (33)
Equation (31) with boundary conditions (32)
holds when B tends to —oo, from above in
the real domain, or to -+ 0, from below in the
imaginary domain.

baal

3, RELATIONSHIPS BETWEEN FUNCTIONS OF
THE VELOCITY LAYER

In Paper 2, Spalding and Evans [2], many
formulae were given involving functions of the
velocity boundary layer. Some of these formulae
gave relationships between quantities which
arise in similar solutions to the equations, while
others enabled general boundary-layer functions
to be deduced from exact similar solutions.
General functions are those which, subject to the
assumptions discussed in Paper 1, apply to any
boundary layer whether similar or non-similar.

Some of these formulae which will be referred
to in later sections are quoted below, but for
detailed discussion the reader should consult
Papers 1 and 2.

Boundary-layer thicknesses are first defined
in terms of the similar length co-ordinate » by:

displacement thickness

< [P, 4f
5=, (‘I—ag) 0 (34)
momentum thickness
= df df) )
w=|g(i-g)e e

The present author has found that a “similar™
boundary-layer thickness can be denoted by an
asterisk whichever similar co-ordinates are used
[i.e. whether they are ( f, n) or ({, £) or any other].
This notation is brief and useful and does not in
practice lead to confusion. This is partly because
the groups, such as Hy, Hy, Hay Ay, Fy o1
tgdy/v, which are finally required and. from
experience, are the best groups with which
to work, are independent of the similar co-
ordinates used.

The relationship between these “‘similar”
boundary-layer thicknesses and the correspond-
ing physical thicknesses 8, and 8,. which are
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defined in terms of the length y. is readily ob-
tained from the appropriate ‘‘similar”
transformation [e.g. equation (16)].

It is worth realizing that 7,”. being the wall
shear in similar co-ordinates, can also be taken
as the reciprocal of a “similar” shear thickness
87, although the more famitiar symbol f,”" will
generally be used in the present work.

If equation (18) is integrated throughout the
boundary layer, the following relationship is
obtained:

—fo" + [T F 7 dn + BT ) =0 (36)

where /' =0 in the main-siream and the
definitions in equations (34) and (35) have been
used. The second term in this can be integrated
by parts to give:

TP dy = [T — |7 f2dy
= f(0) — {7/ *dy  (37)

in which the boundary conditions in equation
(19) have been used and f(oc) represents the
value of the stream function in the main-stream.
But this quantity can be written as:

f(ee) = fo + [7 1 dn. (38)

On inserting equations (37) and (38) into equa-
tion (36), and rearranging, one obtains:

L =L B @D (39

For B = 0, this equation gives the relationship
between the quantities f,, fo”” and the momentum
thickness 8, but the displacement thickness
does not occur, whereas for the case 8 = —1 1t
relates f,, fo and &), but the momentum
thickness 8] does not then appear.

Using the definitions already given. the func-
tions required in the present work are obtained
from the following formulae:

&7 :
Hp =5 0)
Hyy = fo 8y = 5 4
4
Ugdy .
==/, (42)

When the functions occurring on the left-hand
sides of these equations are evaluated for similar
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solutions (1.e. for given values of the parameter
B). the pressure-gradient parameter relating to
the momentum thickness is obtained from:

8 duc _ [Hay =+ (621
v dx 1=/8+ Hpl
The function F,, which measures the rate of
growth of the momentum thickness, is then

obtained from:
__Hg d&jmw 1 j

T ovdy T OB T4 (1B + Hyl

(44)

The quantities occurring on the right-hand
sides of equations (43) and (44) are evaluated
from exact similar solutions, while the functions
occurring on the left apply to any laminar
boundary layer.

i

A (43

[Hay — (43y/v)]

4. ASYMPTOTIC BEHAVIOUR OF BOUNDARY-
LAYER FUNCTIONS FOR LARGE MASS-
TRANSFER RATES
4.1 General Discussion

In this section, an examination is made of the
behaviour of boundary-layer functions for high
rates of mass flow through the wall boundary.
Pretsch [4] has obtained some asymptotic values
of thickness ratios for these conditions; his
results were quoted in Paper 2 but since that
paper was written the need has arisen for
greater detail and higher accuracy.

For the well-known case of intensive suction,
only sufficient detail will be given to show the
form of the solution and the asymptotic values
of the various functions. This case has been
examined at length by Watson [S] who expressed
the functions as asymptotic series in inverse
powers of f,?; these series give high accuracy
when f, is large. Watson considered only the
real domain in detail but his formulae can be
applied to the imaginary domain merely by
replacing f,2 by —f,* wherever it occurs.

The case of intensive blowing will be discussed
in greater detail. The asymptotic form of the
differential equation is first derived, and from
this are obtained the asymptotic value of the
wall shear £’ and relationships connecting the
asymptotic values of the thickness ratios H,,,
Hy, and H,,. The last of these ratios is then



MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS—8 381

expressed in terms of gamma-functions, and a
table of values of all three is given at convenient
intervals in the parameter 8. This table is more
extensive and accurate than that given by
Pretsch [4].

For ease of reference the formulae which hold
for large mass-transfer rates are collected
together in Appendix A.

4.2 Intensive Suction
Since the boundary layer becomes very thin
for intensive inward mass flow, its behaviour
may be examined by suitably extending the co-
ordinates. Defining a new independent co-
ordinate x; and a new stream function ¢; by:

x1 = fon (45)

and
¢ = fo f — foh

equation (18) is transformed to: -

(46)

dn 1
o TR\

Y

ol o @

with boundary conditions:

dPp,
dyi

dg, 1
mm 0_ (R R A 0
X1 %1 Xm (48)
X1 - 90, fj_(;x’l__) 1.

dx,
The asymptotic form of equation (47) for
large values of £, is clearly:

d®y
dyi

d*q, -

+ v 0 49

the solution of which, satisfying the boundary
conditions in equation (48), is:

g1 =00 —1+e™). (50)

From this, the distribution of velocity in the
boundary layer is the well-known asymptotic
suction profile:

fé = (1 — e~fon).

(1)

For this profile it may be shown that the boun-
dary-layer functions have the following values:

5=t (52
v02 1
R (53)
Hy =12 (54)
Hyy =14 (55
Hy, =1 (56)
. 3 duG .

A, = S 0 (57

ug dd:
;= =0 (58)

In solutions to equation (18), when the suction
rate becomes very high the functions tend to
these asymptotic values for all values of §, in the
real and the imaginary domains.

4.3 Intensive Blowing when B is Not Infinite
4.31 Transforming the differential equation

It will have been noticed that the forms of the
velocity equation in the real and the imaginary
domains differ only in the sign of the first term.
This, incidentally, means that a computer pro-
gramme which has been prepared for obtaining
solutions in the real domain requires only minor
changes for use in the imaginary domain. To
anticipate results to be given later, it will be
found that for intensive blowing the first term in
the differential equation becomes negligible, so
that the equation assumes the same asymptotic
form in the two domains. They can therefore be
considered simultaneously, although the line
separating the two domains, when the parameter
B is infinite, must still be treated as a special
case.

Since the first term in equation (18) becomes
negligible, the resulting equation has the form
obtained when the last term on the right-hand
side of equation (1) vanishes. In other words, the
case of intensive blowing behaves in some re-
spects like that of negligibly small viscosity.

It is known that the boundary-layer thickness
increases with increasing outward mass transfer.
For high blowing rates, therefore, the boundary
layer will become very thick, a fact which would
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tend to contravene one of the fundamental
assumptions of the theory that the boundary
layer is confined to a very thin region near the
wall. This does not affect the present discussion
because here, and throughout the present series
of papers, the approximation is assumed to hold.
On the other hand, if the results for intensive
blowing are to be applied to a practical problem
it would be a wise precaution. before doing so,
to test the validity of the boundary-layer
approximation.

As the boundary layer is very thick its be-
haviour may be examined by making a suitable
contraction of the co-ordinates. Defining a new
independent variable y and a new stream
function ¢ by:

= (59
=7 &
and
w0 =, (60)
equation (18) becomes:
1ody drg [ [dg\®
e AU (g ;=0 ey
which for large £, reduces to:
d¥ dg
. dxg-ﬁﬁfl—(a,x,) F=0. (62)

This is clearly the asymptotic form for large
rates of outward mass transfer of both equation
(18), which holds in the real domain where 8 is
positive in the range 0 <{ § < =, and equation
{22), which holds in the imaginary domain where
B is negative in the range — o << B << —0-5, al-
though it does not hold when 8 is infinite.

In terms of these new variables, the boundary
conditions given in equation (19) are:

These three boundary conditions are associated
with the third-order differential equation (61).

The general solution to the second-order equa-
tion (62) can, however. fulfil only two of these
conditions, say the first two. It will be necessary
later to put a further restriction on these solu-
tions in order that they may behave like those of
equation (61), satisfying all three boundary
conditions.

4.32 The asymptotic value of the wall sheur :,,
When equation (62) is evaluated at the wall, it

reduces to:
&
(G0), + =0

164)
dx?/, )

- where the suffix denotes the wall value. If this is

transformed back to the (5, /) co-ordinates vsing
equations (59) and (60}, it becomes:
3
Jo 7

In this relationship it should be remembered
that for the real domain B is positive and 7 is
large and negative, whereas for the imaginary
domain f is negative and f, is large and positive,
so that f,” is always positive. When numerical
solutions to equation (18) are examined it may
be seen that equation (65) is a good approxima-
tion even for moderate blowing rates. For
B = 1 in Table 2 (see section 6), for example, it
holds to about 1 per cent when f, = —30;
for f, = —4-3346, the most intensive blowing
rate for the same value of # considered by
Schlichting and Bussman [6] (see also Paper 2,
Table 3), it holds to within 0-3 per cent.

Using equations (41) and (42) and the fact
that A, = B(8%)?, equation (65) may be writen:

165)

Hyy = ¢ . A, 166)
In other words, when the thickness ratio H,, is
plotted as a function of the pressure-gradient
parameter A,, with v,8,/» as a parameter de-
noting the mass-transfer rate, lines of constant
roda/v are approximately linear, have the slope
(v/vy8,) and pass through the origin. Reference
to Fig. 4(a) of Paper 2 shows that the lines for
(red/v) equal to 20, 2-5 and 3-0 are gradually
approaching this state, although the slopes of the
lines have not quite reached their asymptotic
values.
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4.33 Relationships between thickness ratios

Some relationships which exist between the
asymptotic values of the thickness ratios Hy,,
H,; and H,, will now be derived. On integrating
equation (62) over the range 0 < y < ¢, the
following relationship is obtained:

[ dz(p © d
JO(}“H—)Ezdx—i—BL (1—~)dx
= dp dgy
2] g - g)e-e

The first term in this can be integrated by parts
to give:

© de [ dp de
| rarer=(rg) ] () e

If, now, solutions to equation (62) are such as to
satisfy the boundary condition (dg/dy) - 1 as
x = o0, and the value of ¢ at large y is written as:

ocd(p
+ _‘d s
L dx X

substituting equation (69) into equation (68) and
this in turn into equation (67) and using the
facts that dy = dn/f, and ¢, = 1 gives:

(67)

g(0) = @, (69)

o 8F o
1+2 48 JE 70
+f0 Bfo +Bf0 0 (70)

where the boundary-layer thicknesses 37 and 3}
have been defined in equations (34) and (35). It
should be noted that equation (70) is the limiting
value of equation (39) when f,” becomes very
small.

Since the wall gradient f,”" in equation (65} is
the reciprocal of the shear thickness 38}, the
quantity f, occurring in equation (70) may be
replaced by —pB3}, so that, after rearranging,
the equation finally reduces to:

1

(A -th)=(1+5) e @D
where H,, and H,, are thickness ratios.

Equation (71) holds for all values of 8, in the
real domain, the imaginary domain, and even for
infinite B, although the latter case was excluded
from the discussion at the beginning of section
4.3. Two alternative forms of equation (71) are:

383
)=y o

and
() =, (1) ™

4.34 Evaluating the thickness ratio H,,

If one of the three thickness ratios can be
evaluated exactly, the others can then be ob-
tained from the above formulae. A convenient
ratio to calculate is H,, which will be expressed
in terms of gamma-functions.

If, for the moment, primes be used to denote
differentiation with respect to y, with the
substitution:

o, de
¢ =q¢ g’ (74)
equation (62) may be reduced to:
¢ d¢’ dg
T Bl =0 75
(I —¢™ ¢ 7

which is readily integrable. After a short calcu-
lation, the velocity in the boundary layer may be
expressed as:

d(p(__

28\1/2
dx P2,

(76)

The relationship between ¢ and y will not be
derived from this since it is not required here.

As we are restricting solutions to equation
(62) so that the velocity (dg/dy) tends to unity at
large distances from the wall, equation (76)
must be interpreted differently in the real and the
imaginary domains.

The real domain: In this case B is positive;
therefore, in order that the velocity in the boun-
dary layer may vary from zero at the wall to
unity at the outer edge of the boundary layer,
the function ¢ must decrease from unity at the
wall to zero at the outer edge of the boundary
layer. Because, as will be remembered, f, is
large and negative, for asymptotic blowing
the stream function f is negative throughout
the boundary layer, becoming positive only at
the point where the main-stream is reached.
Solutions for 8 = 1, to be discussed in section 6,
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show this clearly: in these the point at which the
stream function changes sign gets closer to the
main-stream as f, becomes more negative.

The imaginary domain: In this case the para-
meter £ is negative and f; positive; the function ¢
must therefore vary between unity at the wall
and a large positive value at the outer edge of the
boundary layer.

From the definition of y in equation (59) and
the relationship given in equation (65), the
asymptotic value of H,, is:

o[ 502

wlo) / dq)
S - g
b L ( dy |

where the upper limit ¢(o0) in the last expression
is zero for the real domain and infinity for the
imaginary domain.

Substituting equation (76) into (77) gives:

Hay = — B 71— (1 = g2} dg

which, on introduction of a symbol for ¢*# and
making a short calculation, gives finally for H,,
the expression:

an

(78)

#t2 I(1/28) .
Ho=P=g g —am P
where I" is the gamma-function. The second term
on the right will be recognized as a “‘beta’-
function but this symbol is not used in order to
avoid confusion with B.

Equations (71-73) and (79) have been used to
obtain the asymptotic values of the thickness
ratios Hyy, Hy, and H,, The results are con-
tained in Table 1, but the case of infinite 8 will be
considered before discussing this.

4.4 The Case when B is Infinite
Of the two cases of infinite 8 considered in
section 2.3, only equation (27), but not equation
(31), has an asymptote for intensive blowing.
The transformation:
¢
Xo = -

@

(80)

Table 1. Asymprotic values of rthickness ratios for high
blowing rates

3 Hyy Hy, Hy
G0 00 . 00
0-025 0-174409 866138 00201364
0-05 0-233775 640710 0-0364870
0-1 0-306349 4-85812 00630592
(1/9 0-318404 467144 0-0681596
0-125 0-332143 4-47594 0-0742063
7 0-348017 4-27025 0-0814979
(16 0366667 405263 0-0504762
Q-2 0-385049 3-82075 0-101825
025 0416667 3-57143 0-116667
0-3 0-439174 3-39336 0-129421
(1/3) 0:452065 3-30013 0136984
04 0-474019 315424 0150280
05 0-500000 3-00000 0-166667
0-6 0-520251 2-89180 0-179906
08 0-549954 2:74949 0-200021
1-0 0570796 2-65979 0-214602
1-2 0-586830 2-60390 0-225366
14 0-598249 255275 0-234355
16 0-607790 2-51818 0-241360
20 0-622058 2-46886 0-251962
3 0-642976 240124 0-267768
4 0-654370 2:36659 0-276504
5 0-661544 2:34551 0-282047
7 0-670087 232126 0-288674
10 0-676726 2-30268 0-293886
20 0-684772 2:28092 0-300218
=% 0-693147 2-25889 0-306853
—20 0701862 2:23644 0-313829
—10 0-710987 221404 0-321126
-7 0719129 2-19459 (-327683
- 5 0-730480 216824 0-336900
- 4 0-740924 2-14490 0-345435
— 3 0:759497 2-10531 0-360754
— 20 0-801860 202347 0-396280
- 16 0-839367 195951 0-428355
- 14 0-870017 191238 0-454940
— 12 0917336 1-84953 0-495984
— 10 1-000000 175194 0-570796
- 08 1-18558 159712 0-742323
— 07 1-40913 1-47609 0-954636
~ 06 2-05719 1-29727 1-58579
— 055 332390 1-17025 2-84032
— (-51 133414 103863 12-8451
— O30 P 10 N
g
o= — 81
& kq (81

is introduced into equation (27), the negative
signs being used in order that x, and ¢, may be
positive, k, being, of course, a negative quantity.
Equation (27) then becomes:
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1 dp, d%, deps\? -
o e 1 (g) 0 @

For very large k,, this is, after a change of
sign,
d2 de,\?
k2 S (ﬁ) =0.
dys

The boundary conditions given in equation (28)
are:

(83)

d
w=0. =
q (84)
P2
Ko > 00, > 1,
X2 d Xa
The solution to equation (83) is
s = In (cosh x,) (85)

which, although a solution to a second-order
equation, is seen to satisfy all three boundary
conditions in equation (84).

From this solution, the second gradient of ¢,
at the wall is:

dz%)
) =1 86
(5), 59
which, in terms of the function 8, is:

d26 1

(&), =% D
Since the velocity distribution has the form:

de,

da tanh y,, (88)

by means of equation (87) the thickness ratio
H,, becomes:

Hyy = (1 — In 2) = 0-306853. 89)
Equations (71) and (72), which also hold for
infinite B, are used to obtain the other ratios:

Hy =1n2 = 0693147 (90)

and
He =103 on

4.5 Discussion of Table 1
Table 1 contains the asymptotic values of
the thickness ratios at convenient intervals in
the parameter 8. Some values of 8 are given as the

S
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reciprocal of an integer in order to specify them
accurately but briefly. Most of the positive
values of B included in the table are those
occurring in earlier papers of the present series.
The values additional to these were chosen either
because the gamma-functions occurring in the
formula for H,, in equation (79) are particularly
easy to evaluate, which is the case when B is the
reciprocal of an integer, or in order to obtain
well-spaced values in the final thickness ratios.
The ratios may be readily calculated for values
of B not included in Table 1, from formulae
already given, if comprehensive tables of gamma-
functions are available.

Table 1 contains more values of 8, and the
thickness ratios are more accurate than the
results given by Pretsch [4] which were contained
in Table 4 of Paper 2. While there is good overall
agreement with Pretsch’s results, some individual
values differ greatly from his.

In the present calculations, at least seven,
usually eight, significant digits were used, with
the aim of obtaining the final values accurate in
the sixth digit. While most of the values in the
table are believed to be as accurate as this, a
few may contain an error of up to three units in
the last digit quoted. This arises partly from the
form of the relationships used to obtain the
thickness ratios and partly from the methods
used in the calculations, since many gamma-
functions were evaluated from asymptotic
formulae.

Examination of equation (79) shows that,
when 8 = —1/p where p is an integer equal to or
greater than 2, the ratio H,, does not exist;
when p is odd, the gamma-function in the
denominator does not exist, and when p is
even that in the numerator does not exist. An
interpretation of this is that the velocity equation
does not possess solutions for intensive blowing
when the parameter 8 is equal to or lies beyond
the point B = —0-5. Mangler {7] also found that
the equation has no solutions in the imaginary
domain beyond this limiting value of B.

S, OBTAINING NUMERICAL SOLUTIONS ON A
COMPUTER

A number of numerical solutions to equation

(18) obtained on a computer will be given in
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later sections. For numerical integration, the
usual Runge-Kutta process was used. This
process is well known, and most computers
possess a standard programme for it. However,
for purposes of reference both in the present
paper and in later publications, and in order to
supply the numerical coefficients employed, a
brief description of the process is given in
Appendix B.

In order to integrate throughout the boundary
layer, accurate values of the wall shear f," for
specified values of the parameters g and f,
were required. Where these were not known
accurately, a number of trial runs was made
to obtain them. The criterion employed for this
was that the velocity /' should tend to unity as
7 became large and remain at that value.

When this happened, the stream function
became a linear function of % for large %, and
f" became very small. For accurate solutions,
the functions arrived at their final values in the
following order as 7 increased: first the stream
function became proportional to », a few inter-
vals later /' became unity and then after a few
more intervals /' became negligibly small.

When the starting value f,”" was too small, the
function f’ increased to a maximum value,
which was less than unity, and then, as f"
became negative, it began to decrease.

When f,’ was too large. the function f” in-
creased to values greater than unity as 7y
increased.

Table 2. Solutions to the velocity equation for B = 1-0, —3-0 < f, < 30

H. L. EVANS

For many values of $, particularly for nega-
tive values of f; in the real domain, the starting
value f,” was required to extremely high accuracy
in order to obtain a satisfactory solution.

6. THE FORWARD STAGNATION POINT FOR
TWO-DIMENSIONAL FLOW; 38 =1

The case when 8 = 1 in equation (18) cor-
responds to the forward stagnation point when
the flow is two-dimensional. Some solutions for
this case taken from the literature were quoted
in Paper 2. Since these were in many respects
inadequate for the present work, a new set of
solutions was obtained.

The solutions are summarized in Table 2 and
the distribution of the stream function and its
first two derivatives are given in Table 2(a—m).
The third derivative of f is not tabulated as it
may be obtained by substituting £, /" and f”
into equation (18).

Preliminary values of f," to four significant
digits, from which more accurate values were
obtained by successive approximation, were
taken from Table 5 of Paper 2. The value for the
case f, = 0 was already known to high accuracy
from work done by Smith [8] (see also Paper 7
of the present series).

Since the present solutions were obtained, very
accurate values of f,”" as well as tables of the
velocity distribution to four decimal places,
have been found in a publication by Terrill [9].

Solutions

R . 60, 82 dug !
fo 5 oF 3y o Hy, Hyy oA n
' v dx Table
30 3-526640 0-26710 0-12977 -0-38931 2-0583 0-45765  0-016840 2(a)
2:5 3-091124 0-30072 0-14520 —0-36300 2-0711 0-44883  0-021083 2(b)
20 2:670056 034219 0-16393 —0-32786 2-0874 043770  0-026873 2(c)
1-5 2:267646 0-39399 0-18683 —0-28024 2-1088 042366  0-034905 2d)
10 1-889314 0-45932 0-21500 —0-21500 2-1364 0-40620 0-046225 2(e)
05 1-541751 0-54233 0-24971 —0-12486 2-1718 0-38499  0-062355 2(f)
00 1-2325877 0-64789 0-29235 0-0 2-2161 0-36035  0-085469 2(g)
—0-5 09692296 0-78095 034414 0-17207 2-2693 033355  0-11843 2(h)
—10 0:75657486 0-94498 040580 0-40580 2-3287 030702  0-16467 2(i)
—1-5 0-59428178 1-13995 047717 071575 2-3890 0-28357  0-22769 2(3)
—20 0-4758098 1-36166 0-55708 1-11416 2-4443 026506  0-31034 2(k)
—2-5 0-390889090 1-60320 0-64384 1-60961 2:4900 025167  0-41454 23
—30 0-3294530885 1-85839 0-73553 2-20659 2:5266 0-24232 0-54100 2(m)

Note that the solutions in the last three lines are less accurate than the others.
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Table 2(a). Solution for B = 1, fy = 3-0 Table 2(b). Solution for B =1, fo, = 2:5

7 f f f 7 f 1 f
0-0 3-00000 0-000000 3-526640 0-0 2:50000 0-000000 3:091124
02 3-05718 0-514425 1-79541 02 2:55153 0-469921 1-72599
0-4 3-18887 0-772133 0-881480 04 267397 0-728135 0930133
06 3-35728 0-896671 0417484 06 2-83478 0-865115 0-483942
08 3-54317 0-954734 0-190737 08 3-01562 0935279 0243092
1-0 3-73708 0-980849 0-840470(—1) 10 3-20656 0969979 0117866
12 3-93454 0992177 0-357115(—1) 1-2 3-40242 0986542 0:551488(—1)
14 4-13352 0-996916 0-146284(—1) 14 3-60059 0994172 0-248936(—1)
16 4-33313 0-998827 0-577555(—2) 1-6 379981 0-997563 0-108374(—1)
1-8 4-53298 0:999570 0219743(—2) 1-8 3-99949 0-999016 0:454921(—2)
20 473292 0-999848 0-805540(—3) 2-0 4-19936 0999617 0-184083(—2)
22 493291 0-999948 0-284489(—3) 2-2 4-39931 0-999856 0-717886(—3)
24 5:13290 0:999983 0-967980(—4) 2-4 4-59929 0-999948 0-269740(—3)
26 5-33290 0-999995 0-317479(—4) 26 4-79928 0-999982 0:976150(—4)
2-8 5:53290 0:999999 0-100587(—4) 2-8 499928 0-999994 0-339953(—4)
30 573290 1-00000 0-310279(—35) 3-0 5-19928 0-999998 0-113677(—4)
32 5-93290 1-00000 0-958150(— 6) 32 5-39928 0-999999 0-362339(—5)
34 613290 1-00000 0:324257(—6) 34 5-59928 1-00000 0-107217(—5)
36 633290 1-00000 0-145384(—6) 36 5-79928 1-00000 0-262234(—6)
3-8 6-53290 1-00000 0-980222(—-7) 3-8 599928 1-00000 0-135466(—7)
4-0 6-73290 1-00000 0-871071(—7)

Table 2(c). Solution for B = 1, f, = 20 Table 2(d). Solution for B = 1, fo = 1:5

n f f £ n f f f
0-0 2:00000 0-000000 2:670056 00 1-50000 0-000000 2-267646
02 204575 0422915 1-63175 02 1-53991 0-373957 1-51237
04 215799 0-677311 0-963435 04 1-64105 0-619538 0-975828
06 2:30962 0-825203 0-549794 06 1-78178 0-775619 0-609408
08 2-48379 0-908309 0-303231 0-8 1-94731 0-871640 0-368339
1-0 2:67043 0953445 0-161600 1-0 2:12786 0928811 0-215413
12 2-86375 0-977130 0-831884(—1) 12 2:31723 0-961745 0-121845
14 3-06051 0-989135 0-413511(—1) 1-4 2:51160 0-980092 0-666300(—1)
16 3-25900 0-995011 0:198410(—1) 1-6 2:70871 0989972 0-352099(—1)
1-8 3-45831 0997786 0-918651(—2) 18 290727 0995113 0:179725(—1)
20 3-65801 0-999051 0-410318(—2) 20 3-10658 0997697 0-885797(—2)
22 3-85789 0-999608 0-176751(—2) 22 3-30626 0-998951 0-421388(—2)
24 405784 0-999843 0-734154(—3) 2-4 3-50612 0-999538 0-193423(—2)
26 4-25782 0-999940 0-294009(—3) 26 370606 0-999804 0-856402(—3)
2-8 4-45781 0-999978 0-113549(—3) 28 390603 0999919 0:365653(—3)
30 4-65781 0-999992 0-423377(—4) 30 410602 0-999968 0-150508(—3)
32 4-85780 0-999998 0-152979(—4) 32 4-30602 0-999988 0-597050(—4)
34 5-05780 1-00000 0-542132(—5) 34 4-50602 0:999995 0-228152(—4)
36 5-25780 1-00000 0-195396(—5) 36 4-70601 0-999998 0-839049(—5)
3-8 5-45780 1-00000 0-786455(—6) 3-8 4-90601 0:999999 0-296208(—5)
40 5:65780 1-00000 0-411864(—6) 40 5-10601 1-00000 0-995909(—6)
42 5-85780 1-00000 0-300658(—6) 42 5-30601 1-00000 0-310290(—6)
44 6-05780 1-00000 0-272665(—6) 44 5-50601 1-00000 0-797576(—7)
46 6-25781 1-00000 0-270881(—6) 4-6 570601 1-00000 0-481469(—8)
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Table 2(e). Solution for 8 = 1, fo = 10

n f f’ f
00 1-00000 0-000000 1-889314
02 1-03413 0-323946 1-36946
04 1-12341 0-555305 0962117
06 1-25151 0-715513 0655438
0-8 1-40611 0-823095 0432947
1-0 1-57826 0-893138 0-277202
12 1-76165 0937336 0-171953
14 1-95205 0:964352 0-103286
16 2:14666 0980339 0-600409(—1)
1-8 2:34373 0-989494 0-337597(—1)
2-0 2:54219 0-994563 0-183516(—1)
22 2:74140 0-997278 0-963979(—2)
24 2-94102 0-998681 0-489100(—2)
2:6 3-14083 0-999383 0:239609(—2)
2-8 3-34075 0-999721 0-113307(—2)
30 3-54071 0-999878 0-517109(—3)
32 3-74069 0999949 0-227789(— 3)
34 3-94068 0-999980 0:969301(—4)
36 4-14068 0-999993 0-399512(—4)
3-8 434068 0:999998 0-160755(—4)
40 4-54068 1-00000 0-645408(—5)
4-2 4-74068 1:00000 0-273056(—5)
4-4 4-94068 1-00000 0-135405(—5)
46 5-14068 1-00000 0-874707(—6)
4-8 5-34068 1-00000 0-725260(—6)
5:0 5-54068 1-00000 0:692308(—6)

These include most, but not all, of the values of
fo covered here, and in addition f;, == 4, 5 and 10.

The numbers in the present tables are copies,
after trivial changes were made in nomenclature,
of the outputs given by the computer. Some
values of /"' are given as a six-digit number
multiplied by a large negative power of 10. The
computer worked to fairly high accuracy, the
ninth or tenth significant digit being correct,
but even so it is very unlikely that the last
significant digits in these very small values of
[ are correct. As it was not possible to estimate
at which digit these values became inaccurate,
the values given by the computer are given in the
tables without change.

It is a common experience when equation (18)
is solved numerically that solutions are consider-
ably more difficult to obtain when mass transfer
is outwards than when mass transfer is either
absent or directed inwards. A way in which the
difficulty manifests itself is that the wall gradient
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fo'" for any given value of f, is required to very
high accuracy, in order that the velocity f' may
tend to unity for large %. This requirement
becomes more severe as f, increases in
magnitude.

The solutions for f; = —2-0, —2-5 and —3-0
in Table 2(k), (1) and (m), respectively, show
this clearly, where, although f,” was known to
very high accuracy (an increase of one unit in
the last digit quoted made the value too large),
the velocity /' still did not quite become unity
before /'’ became negative. This difficulty has
also been discussed by Eckert et al. [10].

Fortunately, these solutions are still useful,
since it has been found that the error is quite
small when they are used to evaluate such quan-
tities as boundary-layer thicknesses in the
velocity layer or the Nusselt number when
calculating rates of heat transfer.

7 ! I 1
00 0-500000 0-000000 1-541751
02 0-528538 0-274226 1-20746
04 0-605527 0-486047 0-918856
0-6 0-719436 0-645075 0:679676
0-8 0-860694 0-761134 0488648
1-0 1-02164 0-843451 0-341318
1-2 1-19637 0-900164 0231498
1-4 1-38046 0-938095 0152361
1-6 1-57072 0-962707 0-972393(—1)
1-8 1-76494 0978190 0-601385(—1)
20 1-96160 0-987626 0-360181(—1)
22 215973 0:993194 0-208774(—1)
24 2-35872 0:996373 0-117051(—1)
26 2-55819 0-998128 0-634426(—2)
2:8 2-75791 0-999065 0-332270(—2)
30 2:95778 0999548 0-168079(—2)
32 3:15772 0-999789 0-820879(—3)
34 3-35769 0-999905 0-386927(—3)
36 3-55768 0-999958 0-175963(—3)
3-8 3-75767 0-999983 0:771833(—4)
40 3-95767 0-999993 0-326443(—4)
42 415767 0-999997 0-133087(—4)
44 4-35767 0-999999 0-522784(—5)
46 4-55767 1-00000 0-197706(—5)
4-8 4-75767 1-00000 0-718337(—6)
50 4-95767 1-00000 0-249244(—6)
52 515767 1-00000 0-809878(—7)
5-4 5-35767 1-00000 0-228445(—7)
56 5-55767 1-00000 0-345096(—8)
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7. SOLUTIONS FOR B8 = -1
When B == —1 in equation (18), a simple
relationship was found between the wall shear
fy’ and the mass-transfer parameter f;. This
means that, in a computer programme for
solving the equation numerically, the starting
values f, and £, can be specified exactly without
the need for successive approximation.
The exceptional behaviour of the case
== —1 was first observed by Thwaites [11-13]
who integrated the differential equation in
terms of error functions. This work was brought
to the notice of the author only after preparation
of the present paper. It should be possible to
draw up a more accurate and complete set of
functions from an exact solution of this nature
than was possible by the numerical methods
employed here.

Table 2(g). Solution for B = 1, fy = 0

g f r i
00 0-0000000 0-000000 12325877
02 00233223 0-226612 1-03445
04 0-0880566 0-414456 0-846326
06 0-186701 0-566281 0-675172
08 0-312423 0-685938 0-525132
-0 0-459227 0777865 0-398013
12 0-622028 0-846671 0-293776
14 0796652 0-896809 0-211003
16 0979780 0-932348 0-147352
1-8 1-16886 0-956834 0-999641(—1)
2:0 1-36197 0973217 0-658257(—1)
2:2 1-55776 0-983854 0-420400(—1)
24 175525 0-990550 0-260207(—1)

2:6 1-95381 0994634 0:155971(—1)
28 2-15300 0-997046 0-904529(—2)
30 2-35256 0998425 0-507841(—2)
32 2-55233 0999187 0-275536(—2)
34 2:75221 0-999594 0:144470(—2)
36 2-95215 0-999804 0-731783(—3)
38 315212 0999909 0-358039(— 3}
40 3-35211 0-999960 0-169252(—3)
42 3-55211 0-999983 0-773960(—4)
4-4 3-75210 0-999994 0-343594(—4)
46 3-95210 0999998 0-149530(—4)
4-8 4-15210 1-00000 0-653871(—95)
5-0 4-35210 1-00000 0-303872(—5)
52 4-55210 1-00000 0:165020(—5)
5-4 475210 1-00000 0:113338(—5)
56 495210 1-00000 0-962240(—6)
58 5-15210 1-00000 0-922646(—6)

389

Table 2(h). Solution for 8 = 1, fu = —0-5

] S f f

00 —0-500000 0000000  0-9692296

02 —0-481318 0-183247  0-862040

04 —0-428168 0344526 0-750471

06 —0-344997 0483482 0639574

08 —0-236228 0-600675 0533436

10 —0-106094 0697385 0435188

12 0-0414808 0775424 0347020

14 0202975 0-836953  0-270234

16 0-375317 0884310 0205312

18 0555911 0919856  0:152035

2:0 0:742623 0945849  0-109619

22 0933752 0964349  0-768798(—1)
24 1-12798 0977152 0:523963(—1)
2:6 1-32433 0985758  0:346704(—1)
28 152209 0991373 0:222545(—1)
3-0 1-72075 0994927  0-138465(—1)
32 1-91997 0997105  0-834479%(—2)
3-4 211953 0998399  0-486823(—2)
36 231929 0999142  0-274771(—2)
3-8 2:51917 0999556  0:149980(—2)
40 271910 0999778  0-791528(—3)
42 291907 0999894  0-403972(—3)
44 3-11505 0999952  0:199597(—3)
46 3-31905 0999980 0957723 —4)
48 3-51905 0999994  0-449898(—4)
50 3-71904 1-00000 0-210984( —4)
52 3-91905 1-00000 0-103092(—4)
54 4-11905 1-00000 0-565512(—5)
56 431905 1-00001 0-376215(—5)

7.1 The Real Domain
For B = —1, equation (18) has the form:

bf‘/l/ +ﬁ‘“’”‘ 1 +f12:0

On combination of the second and last terms on
the left-hand side, two integrations and insertion
of the boundary conditions at the wall given in
equation (19), this reduces to:

af

(92)

e AR TR )
with the remaining boundary condition:
9f—> 1 exponentially as n - oo. (94)

dn

In the definition of the displacement thickness
8 in equation (34), the contribution of large
values of 5 to the integral is very small. It is
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Table 2(i). Solution for B = 1, fo = —1-0
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Table 2(j). Solution for B =1, fo = —1-5

n f f f ] f f f

00 — 1-000000 0-000000 0-75657486 0-0 —1-50000 0-000000 0-59428178

0-2 —0-985208 0-146144 0-703457 02 —1-48827 0-116475 0-569456

0-4 —0-942302 0-280906 0-643189 0-4 —1-45378 0-227408 0-539018

06 —0-873684 0-403109 0-578262 0-6 —1-39775 0-331771 0-503909

0-8 —0-781943 0-512058 0511033 0-8 —1-32157 0-428726 0-465114

1-0 —0-669762 0-607514 0-443673 1-0 - 122679 0-517638 0-423644

12 —0-539827 0-689649 0-378130 12 —1-11508 0-598074 0-380526

1-4 —0-394755 0-758999 0316076 1-4 —0-988142 0-669807 0-336787

1-6 —0-237024 0-816403 0-258865 1-6 —0-847736 0-732814 0-293427

1-8 —0-0689186 0-862936 0:207496 1-8 —0-695587 0-787267 0-251397

20 0-107508 0-899834 0-162594 2:0 —0-533376 0-833519 0-211561

22 0-290461 0-928422 0-124408 22 —0-362692 0:872087 0-174659

2:4 0-478412 0-950039 0-928400(—1) 2:4 —0-185010 0-903618 0-141281

2:6 0-670098 0-965973 0-674959(—1) 2:6 —0-:00166414 0-928861 0-111827

2-8 0-864502 0-977411 0:477530(—1) 28 0-186169 0-948625 0-865024(—1)

30 1-06083 0-985397 0-328442(—1) 30 0-377476 0963738 0-653100(—1)

32 1-:25849 0-990815 0-219398(—1) 32 0-571408 0-975013 0-480700( — 1)

3-4 1:45704 0-994385 0-142212(—1) 34 0-767276 0-983208 0-344516(—1)

3-6 1-65616 0-996666 0-893741(—2) 36 0-964532 0-989006 0-240166(—1)

3-8 1-85564 0-998079 0-544174(—2) 3-8 116276 0-992994 0-162681(—1)

4-0 2-05535 0-998927 0-320791(—2) 40 1-36164 0995658 0-106975(—1)

42 2:25519 0999419 0-182981(—2) 4-2 1-:56096 0-997386 0-682286(—2)

4-4 2:45511 0-999695 0-100941(—2) 4-4 1-76055 0-998472 0-421747(--2)

46 2-65506 0-999846 0-538329(—3) 4-6 1-96032 0-999133 0-252479(—2)

4-8 2-85504 0-999925 0-277501(—3) 4-8 2-16019 0-999524 0-146288(—2)

50 3-05503 0-999965 0-138302(—3) 50 2:36012 0-999746 0-819877(—3)

52 3-25502 0-999984 0-667200(—4) 52 2-56008 0999869 0-444252(3)

5-4 3-45502 0-999994 0-312651(—4) 5-4 2-76006 0-999935 0-232634(~3)

56 3-65502 0-999998 0-143598(—4) 56 2-96005 0-999969 0-117696(—3)

5-8 3-85502 1-00000 0-660797(—5) 5-8 3-16005 0-999986 0-575298(—4)

6-0 4-05502 1-00000 0-319709(—35) 60 3-36005 0-999994 0-271849(—4)

62 4-25502 1-00000 0-176529(—5) 6-2 3-56005 0-999997 0-124439(—4)

6-4 4-45502 1-00000 0-120036(—5) 6-4 3-76005 0-999999 0-554944(—5)

66 4-65502 1-00000 0-100016(—35) 6-6 3-96005 1-00000 0-244687(—5)

6-8 4-85502 1-00000 0-947571(—6) 6-8 4-16005 1-00000 0-110574(—5)

7-0 5-05502 1-00000 0-951021(—6) 7-0 4-36005 1-00000 0-550794( — 6)
72 4-56005 1-00000 0-332961(—6)

therefore possible to specify 8} to any required
accuracy by replacing the upper limit by
some large value 7, of n beyond which the contri-
bution to the integral is negligible. When this is
done and the integration is carried out, the fol-
lowing result ensues:

st = (1= g ) =m— s 1 09

At sufficiently large distances from the wall,
therefore, the stream function may be written
accurately as:

Flm) = (n +fo — ), 1aree. (96)

Substituting this and the boundary condition
(94) into equation (93) then gives:

O —2fo81 +2+2(fo — 81 —fo)m =0. (97)

Since this holds for any large value of 7,, both the
coefficient of n, and the group of terms which
are not multiplied by », must be identically zero.
The following relationships therefore hold:

Jo' =S — & (98)
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and

8 = fo = (S — 22

Equation (98) is clearly equation (39) for the
present value of 8.
From these equations the wall gradient £, is

then related to the parameter f, by:

for =t =
the positive sign in equation (99) having been

used for obvious reasons.

Using this relationship, exact corresponding
values of f, and f," were used in obtaining

(100)

Table 2k). Solution for § = 1, fy = —2-0

%9)

7 f b id r
00 —2-00000 0-0000000 0-4758008
-2 —1-99056 (0940678 (464244
04 —1-96255 185459 0-44908%
06  —191660 0273485  0-430655
0-8 —1-85342 0-357525 0-409283

10 —177389 0437028  0-385345

12 —1-67895 0511519 0-359245

14 —1-56964 0-580610 0-331418

1-6 —1-44708 0-644002 0:302332

8 —131243 0701493 0-272483
2:0 —1-16689 0-752980 (-242392
22 —1-01164 0798469 0212592
2-4 — 847890 0-838072 {-183616
26 —0-676791 0872004 0155977
28 —0-499446 0900583  0-130145
30 —0315888 0924209  0-106516

32 —0-130061 0943357  0-853946(-~1)
34 00601913 0958547  0-669703(—1)
36 0253131 0970329  0-513086(—1)
38 0-448133 0979251 0-383525(—1)
4-0 0-644676 -985840 0-279356{ -1}
42 0842345 0990578  0-198050(—1)
44 1-04081 0993893  0-136511(—1)
4-6 1-23983 (-996148 0-913861(—2)
48 1-43822 0:997636 0-59357H~—2)
50 1-63885 0998589  0-373695(—2)
52 1-83863 0999180  0-227781(~2)
5-4 2-03851 999535 (-134236{ - 2)
56 223844 0999741  0-763221(—3)
58 2-43840 0-999856 0-417069(—3)
6-0 2-63838 0999917  0-217330(-3)
62 2-83836 0999948  (-106014(—3)
64 3-03835 0999963  0-460190(—4)
66 3-23835 0999969  0:146521(—4)
68 343834 0999970  —0-136784(—5)

Table 2(1). Solution for 8 = 1, fy = —2-5

7 f r i

00 ~2:50000 0-0000000  0-390889090
02 —~ 249222 0776471 0-383209

04 -~ 246903 0-153938 0-377343

06 —2:43076 0-228445 0-367393

08 —2:37780 0-300764 0-355477

1-0 —~2-31063 0-370514 0341724

12 —~2:22979 0-437341 0-326278

14 -2:13591 0-500923 0309259

16 —2-02966 0-560970 0-290962

1-8 ~1-91177 0617230 0-271463

2-0 —1-78303 0-669492 0251017

22 - 1-64425 0717589 0-229863

24 ~1-49628 0761407 0-208263

26 —1-33998 0-800884 0-186507

2:8 -~ 117622 0-836020 0-164901

30 - 1-00586 0-866876 0-143772

32 -0-829742 0893582 0-123445

34 —~{-648687 0916329 0-104241

36 —0-463458 0-935372 0-864465(— 1)
3-8 ~0-274765 0951018 0-703060(—1)
40 —0-0832534 0963617 0-559950(—1)

4-2 0110504 0973545 0-436128(—1)
4-4 0-306013 0981192 0-331742(—1)
46 0-502854 0-986940 0-246119(—1)
48 0-700686 0991153 0-177876(— 1)
50 0-899235 0994158 0-125088(— 1}
52 1-09829 0996244 0-855007(—2)
54 1-29769 0997651 0-5367473(~2)
56 1-49732 0998571 0-365362(—2)
58 1-69709 0-999155 0-227980(~2)
60 1-89696 0-999514 0-137733(—2)
62 2-09689 0-999728 0-804720(—3)
64 2:29685 0-999851 0-453543(—3)
66 2-49683 0999919 0-246544(—3)
68 2-69681 0-999955 0-128205(—3)
7-0 2-89681 0999974 0-630291(—4)
72 3-09680 0-999983 0-283528(—4)
74 3-29680 0-999986 0-104921(—4)
76 3-49680 0-999987 0 154128(—5)
7-8 3-69680 0999987  —0-287245(—5)
80 3-89679 0999986 —0-506581(—35)

numerical solutions to equation (18) on a com-
puter. These solutions are summarized in
Table 3 and the distributions with n of the
stream function f and its first two derivatives
are given in Table 3(a-h). The magnitudes of f,
were chosen so as to give well-spaced values for
the mass-transfer parameter (v,5,/v) between
—(-58539, its value at the separation point, and
—0-5, the value when f; is infinite.



392 H. L. EVANS

Table 2(m). Solution for = 1, fy = —3-0 In Table 3, the quantities f;, /," and &% are
TS S A T T e s s written as square roots in order to specify them
7 f f’ 1 to high accuracy.
In Table 3(a-h), the interval in % is in some
00 —3-00000 0-0000000  0-3294530885 cases 0-1 and in others 0-2. Since the initial
3421 :gggggf 8??32;;5 gg;ggi? values of f, and £, were specified to ten signifi-
06 —2.94130 0-194342 0-316338 cant digits. it is expected that these tables are
08 —2-89615 0-256932 0-309349 accurate to six digits, with the possible exception
1-0 —2:83863 0-318000 0-301131 of the values of /'’ less than 1-0 x 10~* which are
ii :%gg?gz 82;122? 8%23;2 p.ro.bably only accurate in the first few significant
16 259537 0489729 0269684 digits.
1-8 —2:49211 0-542430 0257164
20  —2:37857 0592536  0-243757 7.2 The Imaginary Domain
22 —223528 0-639879 0229553 It is clear that the case § = —1 also contains
24 —2-12281 0-684311 0-214654 . . . . .
26 —198176 0725702 0-199175 special features in the imaginary domain. By
28 —1-83274 0763951 0183245 means of the same method as used for the real
30 —1-67639 0-798980 0-167011 domain some numerical solutions have also been
32 —1-51337 0-830746  0-150642 obtained for this case. However, since they show
g:g :{:fggg; g:ggzzgg 8:}?2};?3 some unexpected features which require fuller
3.8 0990728 0-906575 0-102668 discussion than is possible here, they will be
40 —0-807461 0-925606 0-877707(—1) published elsewhere.
4-2 —0-620679 0-941744 0-737839(~1)
46 _ommms 09619  ouomse_1) 8 SOLUTIONS IN THE REAL DOMAIN FOR
48 00446124 0974999  0-390465(— 1) HIGH VALUES OF g WHEN f, = 0
50 0-151107 0981904 0-302400( — 1) Solutions in the real domain when no mass
52 8'21?%}1 g'ggnzg 8‘%22228(— D flows through the wall boundary were quoted in
g.g 0744425 0994012 0~12080(3>2::; Paper 7, Evans [3]. They were given to high
5.8 0943443 0-996045 0-841788(—2) accuracy and were largely taken from calcula-
60 1-14280 0-997441 0-568780(—2) tions by Smith [8]. With suitably small intervals
62 1-34239 0-998371 0-371614(~-2) in the parameter f, they covered the range from
64 1-54213 0998967 0233715(—2) the separation point at 8 = —0-198838 to the
66 1-74196 0-999335 0-140324(—2) p . .
68 1-94185 0-999550 0-790534(—3) value B = 2. The solution for 8 = 0, which is
7.0 214177 0-999666 0-400607( —3) known in closed form, was also given, but a
72 234171 0-999720 0:159173(—3) large gap, where no exact solutions were known,
74 2:54166 0-999736  0-128599(—4) still remained between 8 = 2 and 8 = <.
7:77-577“72;7741761 ,,09997,29 —0748929(—471)7‘ Some interpolated solutions for this region,
Table 3. Solutions to the velocity equation in the real domain for = —1-0
fioo R o s T, e g wedst SORTON
v 14 X vodx Table
2)} 0 (2)% 0-41407 —0-58559 34154 00 —0-17146 0-68582 3(a)
(25/12)  (1/12)% (4/3)% 039954 —0-57668 2:8901 0-11534 —0'15963 0-63852 3(b)
(20/9F  (2/9)%  (20/9)F — (2/9)} 038017 —0-56672 26812 017921 —0-14453 0-57812 3(¢c)
(5/2)t /2 (5/2)F — (1/2)* 035026 —0-55381 2-4954 024767 —0-12268 0-49073 3(d)
(3)3 1 3 — 1 0-31200 —0-54041 2:3463 0-31200 —0:097347 0-38939 3(e)
2 )} 2 — (2)¢ 0-26359 —0-52717 2-2224 0-37277 —0-069477 0-27791 3(f)
5? (3)t (5 — (3t 023279 052053 2-1651 040320 —0-054191  0-21676 3(g)
(10)% (8)} (10)2 — (8)F 016105 —0-50929 2:0730 0-45552 —0-025937 0-10375 3(h)

@ e — — —0-5 20 05 00 00 —
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Table 3(a). Solution for B = —1, f = (2}

Table 3(a)—continued

n f f f
0-0 1-414213562  0-00000000  0-000000
0-1 1:41437 000477240  0-932500(—1)
0-2 1-41546 0-0182398 0-174182
03 1-41827 0-0392499 0-244333
0-4 1-42353 0-0667881 0-304925
0-5 1-43182 0-0999477 0-356893
06 1-44367 0-137902 0400914
07 1:45953 0-179882 0-437457
0-8 1-47976 0-225155 0-466825
09 1:50465 0-273014 0-489210
1-0 1-53443 0-322768 0-504737
1-1 1:56924 0-373736 0-513517
12 1-60919 0-425251 0-515690
1-3 1-65429 0-476661 0-511464
1-4 1-70450 0-527341 0-501148
1-5 175972 0-576702 0-485170
1-6 1-81978 0-624204 0-464087
1-7 1-88448 0-669372 0-438584
18 1-95356 0-711800 0-409455
19 2:02674 0751171 0-377575
2:0 2-10369 0-787254 0-343865
2-1 2-18407 0-819914 0-309249
22 2-26755 0-849103 0-274614
23 2-35378 0-874863 0-240767
2:4 2-44241 0-897307 0-208406
25 2-53314 0-916613 0-178096
2:6 2:62564 0-933008 0-150257
27 2:71965 0-946755 0-125158
2-8 2-81491 0958136 0-102932
29 291121 0967438 0-835881(—1)
30 3-00834 0-974946 0-670304(—1)
3-1 3-10615 0-980931 0-530853(—1)
32 3-20448 0-985643 0415238(—1)
33 3-30324 0-989307 0-320838(—1)
34 3-40232 0:992121 0-244899(—1)
3.5 350164 0994257  0-184692(—1)
36 3-60115 0-995859 0-137631(—1)
37 3-70080 0-997046 0-101353(—1)
3-8 3-80055 0-997915 0-737646(—2)
39 3-90037 0-998544 0-530635(—2)
40 4-00025 0-998994 0-377327(—2)
4-1 4-10017 0999312 0:265247(—2)
42 420011 0-999535 0-184344(—2)
43 4-30007 0-999689 0-126673(—-2)
4-4 4:40005 0-999794 0-860686(—3)
4-5 4-50003 0-999865 0-578283(—3)
4-6 4-60002 0-999912 0-384235(—3)
47 470001 0-999944 0-252486(—3)
4-8 4-80001 0-999964 0-164091(—3)
49 4-90001 0-999978 0-105478(—3)
5-0 5-00000 0-999986 0:670630(—4)
51 5-10000 0999991 0-421765(—4)
52 5-20000 0-999995 0-262385(—4)
53 5-30000 0-999997 0-161475(—4)
54 5-40000 0-999998 0-983062(—5)
55 5-50000 0-999999 0-592078(—5)

n f I fr
56 5-60000 0-999999 0-352787(—5)
57 5-70000 1-00000 0-207966(—5)
5-8 5-80000 1-00000 0-121289(—5)
59 5-90000 1-00000 0:699822(—6)
60 6-00000 1-00000 0:399478(—6)

Table 3(b). Solution for B = —1, fy = (25/12)}

n f f f
00 1-443375672  0-0000000  0-288675135
0-2 1-44987 0-0683357 0-389597
04 1-47186 0-153951 0:462082
06 1:51224 0-251431 0-508450
0-8 1-57288 0-355630 0-529311
1-0 1-65461 0-461482 0-525105
1-2 1-75726 0-564102 0-497404
1-4 1-87974 0-659107 0-449728
1-6 2-02016 0-743029 0-387640
1-8 2-17606 0-813665 0-318092
2-0 2-34468 0-870246 0-248223
2:2 2-52326 0:913341 0-184082
2:4 2:70923 0-944536 0-129714
2:6 2-90042 0-965999 0-868702(—1)
2-8 3-09513 0-980040 0-553227(—1)
30 3-29209 0-988780 0-335282(—1)
32 3-49041 0-993959 0:193532(—1)
3-4 3-68952 0-996885 0-106489(—1)
36 3-88907 0998461 0:558998(—2)
38 4-08885 0999271 0:280153(—-2)
40 4-28875 0:999669 0:134135(—2)
42 4-48871 0:999856 0-613906(—3)
44 4-68869 0-999940 0-268714(—3)
46 4-88868 0:999976 0-112537(—3)
4-8 5-08868 0-999991 0-451112(—4)
5-0 5-28868 0-999997 0-173140(—4)
52 5-48868 0-999999 0:636452(—5)
54 5-68868 1-00000 0-224130(—5)
56 5-88868 1-00000 0-756239(—6)
58 6-08868 1-00000 0-244573(—6)
6-0 6-28868 1-00000 0-758728(—7)

in the form of values of the thickness ratios
H,, and H,,, were given in Paper 2. The method
by which the interpolated solutions were ob-
tained should have given an accuracy of about
+0-3 per cent. The present, more accurate
calculations have shown that the values of Hy,
were all slightly less than 0-1 per cent low, while
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Table 3(c). Solution for B = —1, f, = (20/9)%

7 f f f

00 1-490711985  0-0000000  0-4714045209
02 1-50051 0-0996318  0-521906

0-4 1-53112 0-207516 0-553674

0-6 1-58380 0-319738 0-565003

08 1-65902 0-432065 0554602

1-0 1-75635 0-540142 0-522729

1-2 1-87452 0-639889 0-471922

1-4 2:01152 0-727971 0-407076

1-6 2-16478 0-802221 0-334773

1-8 2-:33143 0-861854 0-262051

20 2-50858 0-907427 0-195049

22 2-69357 0-940542 0-137989

2:4 2-88412 0-963418 0-927943(—1)
2:6 3-07841 0-978446 0-593432(—1)
2-8 3-27512 0-987838 0-361153(—1)
3-0 347330 0-993428 0-209330(—1)
32 3-67233 0-996598 0-115653(—1)
34 387184 0-998313 0-609552(—2)
36 4-07160 0-999198 0-306704(—2)
3-8 4-27149 0-999635 0-147424(—2)
40 447144 0-999841 0-677346(—3)
42 467142 0:999933 0-297621(—3)
4-4 4-87141 0-999973 0-125118(—3)
46 5-07141 0-999990 0-503431(—4)
4-8 5-27141 0-999996 0-193941(—4)
50 5-47141 0-999999 0-715539(—35)
52 5-67141 1-00000 0-252881(—5)
5-4 5-87141 1-00000 0-856092(— 6)
56 6-:07141 1-00000 0-277524(—6)
58 6-27141 1-00000 0-859445(—7)
60 6-47141 1-00000 0-252226(—7)
62 667141 1-00000 0-683622(—8)
64 6-87140 1-00000 0-176441(—8)
66 7-07140 1-00000 0-437694(—9)
6-8 7-27140 1-00000 0-104325(—9)
7-0 7-47140 1-00000 0-238918(—10)
72 7-67140 1-00000 0-525725(—11)

Table 3(d). Solution for B = —1, fy = (5/2)%
i S f £

0-0 1-581138830  0-0000000 0-7071067810
01 1-58466 0-0701444 0695952

0-2 1-59513 0-139199 0-685066

03 1-61246 0-207122 0-673131

0-4 1-63651 0-273755 0-659103

0-5 1-66716 0-338847 0-642196

0-6 170422 0-402080 0-621873

0-7 1-74750 0-463098 0-597844

0-8 1-79675 0-521524 0-570058

09 1-85171 0-576990 0-538692

1-91204

0-629155

0-504136

Table (3d).—continued

i

7 f St f

1-1 1-97742 0677729 0-466954

1-2 2:04746 0-722482 0-427854

13 212178 0-763262 0-387632

1-4 2:19998 0799999 0-347127

1-5 2-28165 0-832706 0-307167

1-6 2:36639 0-861476 0-268520

1-7 2:45382 0-886476 0-231858

18 2-54356 0-907932 0-197723

-9 2-63529 0926118 0-166513

20 2-72869 0-941341 0-138480

2:1 2-82347 0953924 0:113728

22 2:91940 0964195 0-922376(—1)
23 3-01625 0972476 0-738802(—1)
24 3-11384 0979069 0-584466(—1)
25 3-21201 0-984254 0-456707(—1)
2:6 3:31065 0-988282 0-352536(— 1)
27 3-40964 0991373 0-268843(—1)
2:8 3-50890 0993717 0-202566(— 1)
29 3-:60836 0-995473 0-150817(—1)
30 3-70798 0-996773 0-110967(—1)
31 3-80771 0997724 0-806936(—2)
32 3-90751 0-998412 0-579994(—2)
33 4-00738 0-998903 0:412085(—2)
34 410729 0-999251 0-289444(—-2)
35 4-20723 0-999494 0-200997(--2)
36 4-30719 0-999661 0-138005(—2)
37 440716 0999776 0-936932(--3)
3-8 4-50714 0-999853 0-629012(—3)
39 4-60713 0999905 0-417612(—3)
40 4-70712 0:999939 0-274203(—3)
41 4-80712 0-999961 0-178066(—3)
42 490711 0-999976 0-114372(—3)
43 5-:00711 0-999985 0-726618(—4)
44 5-10711 0-999991 0-456625(—4)
45 5-20711 0999994 0-283856(—4)
46 5-30711 0-999997 0-174556(—4)
47 5-40711 0999998 0-106191(—4)
4-8 5-50711 0-999999 0-639102(—5)
49 5-60711 0999999 0-380536(—5)
50 570711 1-00000 0:224166(—5)
5-1 5-80711 1-00000 0-130648(—5)
52 590711 1-00000 0-753376(—6)
5-3 6-00711 1-00000 0-429829(—6)
54 6-10711 1-00000 0-242664(—6)
55 620711 1-00000 0-135557(—6)
56 6-30711 1-00000 0-748920(—7)
57 6-:40711 1-00000 0-409228(—17)
5-8 6-50711 1-00000 0:220994(—7)
59 6-:60711 1-00000 0-117677(—7)
60 1-00000

6-70711 0-617579(—8)

those of H,, were slightly more than 0-1 per cent
low. The values of the wall gradients f,”' ob-
tained from H,, and H,, were also low by some-
what less than 0-1 per cent.
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Table 3(e). Solution for B = —1, f, = 3)%

7 f f il
00 1732050809  0-0000000  1-000000
01 173693 0-0965307  0-932333
02 175115 0186743  0-872987
03 1-77409 0271295  0-818696
0-4 1-80523 0350572 0-767137
05 1-84404 0424760  0-716725
0-6 1-89002 0493922  0-666480
07 194266 0-558045  0-615911
08 2-00146 0-617090  0-564923
09 2:06590 0671023  0-513732
1-0 2:13549 0-719844  0-462781
11 2:20970 0763606  0-412657
12 2-28805 0-802425  0-364016
13 2-37003 0-836481  0-317516
1-4 2-45519 0-866020  0-273757
15 2-54309 0-891341 0233239
16 263333 0912788  0-196329
17 272553 0930734  0-163253
1-8 2-81937 0-945569  0-134089
19 291456 0957681  0-108785
2:0 301083 0967449  0-871747(—1)
21 3-10798 0975231  0-690032(— 1)
22 320582 0981354  0-539547(—1)
23 330421 0986114  0-416775(—1)
24 3-40301 0-989770  0-318068(—1)
2:5 3-50213 0992543 0-239841(—1)
2:6 3-60149 0994623  0-178711(—1)
27 3-70104 0996164  0-131596(—1)
28 3-80071 0:997293  0:957711(—2)
2:9 3-90049 0998110  0-688921(—2)
30 4-00033 0998694  0-489873(—2)
31 410022 0:999107  0-344358(~2)
32 420014 0999396  0-239323(—2)
33 4-30009 0999596  0-164451(—2)
34 4-40006 0999732 0-111737(=2)
35 4-50004 0999825  0-750745(—3)
36 4-60003 0999886  0-498826(—3)
37 470002 0999927  0-327786(—3)
38 4-80001 0999954  0-213030(—3)
39 4-90001 0999971  0-136936(—3)
4-0 5-00000 0999982  0-870652(—4)
41 5-10000 0-999989  0-547569(—4)
42 5-20000 0-999993  0-340658(~4)
43 5-30000 0999996  0-209653(—4)
4-4 5-40000 0999998  0-127645(—4)
45 5-50000 0999999  0-768854(—5)
46 5-60000 0999999  0-458186(—5)
4-7 5-70000 1-00000 0-270162(~5)
48 5-80000 100000 0-157630(—5)
4.9 5-90000 1-00000 0-910170(—6)
50 6-00000 1-00000 0-520176(— 6)
51 610000 1-00000 0-294357(—6)
52 6-20000 100000 0-165032(—6)
53 6-30000 1-00000 0-917210(—~7)
54 6-40000 1-00000 0-506228(—7)

Table 3(f). Solution for 8 = —1, fo = 2

7 f f f7
0-0 2-00000 0-000000 1-414213562
01 2-00678 0-132837 1-24764
0-2 2-02606 0-250385 1-10692
03 2-05642 0-354829 0-984535
0-4 2-09664 0-447735 0-875475
0-5 2-14562 0-530258 0-776479
0-6 2-20238 0:603297 0-685526
0-7 2:26599 0-667592 0-601456
0-8 2-33563 0-723798 0-523692
09 2-41050 0-772533 0-452021
1-0 2-48990 0-814405 0-386424
1-1 2-57317 0-850023 0-326957
1-2 2:65972 0-880002 0-273655
13 2-74901 0-904958 0-226478
1-4 2-84056 0-925497 0-185280
1-5 2-93398 0-942205 0-149805
16 3-02850 0-955637 0-119650
17 3-12501 0966307  0-944916(—1)
1-8 3-22208 " 0974682 0-737091(—1)
1-9 3-31989 0-981178 0-568125(—-1)
2:0 3-41827 0-986156 0-432690(—1)
241 3-51708 0-989926 0-325643(—1)
22 3-61622 0-992748 0-242196(—1)
23 371560 0-994834 0-178025(—1)
24 3-81517 0-996360 0-129337(—1)
25 3-91486 0-997462 0-928791(—2)
2:6 4-01465 0-998249 0:659334(—2)
27 4-11450 0-998805 0-462719(—2)
2-8 421441 0-999193 0-321058(—2)
29 4-31434 0-999461 0-220260(—2)
30 4-41429 0-999643 0-149417(—2)
31 4-51427 0-999767 0-100232(—2)
32 4-61425 0-999849 0-664930(—3)
33 4-71423 0-999903 0-436251(—3)
34 4-81423 0-999939 0-283080(—3)
35 4-91422 0-999961 0-181683(—3)
36 5-01422 0-999976 0-115338(—3)
37 5-11422 0-999985 0-724281(—4)
3-8 521422 0-999991 0-449918(—4)
39 5-31421 0-999995 0-276486(—4)
4-0 5-41421 0-999997 0-168093(—4)
4-1 5-51421 0-999998 0-101109(--4)
42 5-61421 0-999999 0-601766(—5)
4-3 5-71421 0-999999 0-354414(—5)
4-4 5-81421 1-00000 0-206588(—5)
4.5 591421 1-00000 0-119215(—5)
4-6 6-01421 1-00000 0-681340(—6)
47 6-11421 1-00000 0-385967(—6)
4-8 6-21421 1-00000 0-217023(—6)
4-9 6-31421 1-00000 0-121375(—6)
5-0 6-41421 1-00000 0-677429(—T)
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In view of the accurate solutions for no mass
transfer contained in Paper 7, it was felt that the
remaining gap in the real domain should be filled
with more accurate data than interpolated
solutions.

Table 4 contains such values, the solutions for
B =1, 2 and oo, taken from Paper 7, being in-
cluded for completeness. Solutions were first
obtained on a computer using the method
described in section 5 and Appendix B. How-
ever, these were found to contain some error,
which will be discussed below; this error is
believed to be caused by using too coarse an
integration interval. Means were found to
eliminate a large part of it, and Table 4 contains
corrected values of the functions.

The values of f," in Table 4 are those obtained
by trial and error on the computer. They are

Table 3(g). Sclution for B = —1, f, - (5)}

] f f S
0-0 2:236067978  0-000000 1-732050809
02 2:26725 0296193 1-26051
04 2:34930 0513207 0:926372
06 2:46867 0:672057 0:672963
0-8 2:61515 0-786140 0-476178
1-0 2:78082 0-865565 0-325069
1-2 2:95963 0-918761 0-212861
1-4 3-14706 0952884 0133269
1-6 3-33991 0973800 0-796528(—1)
1-8 3-53600 0:986036 0-454247(—1)
2:0 3-73396 0992868 0:247192(—1)
22 3-93294 0:996509 0-128407(—1)
2:4 4-13245 0-998363 0-637055(—2)
26 4:33222 0-999264 0-302013(—2)
2:8 4-53212 0-999683 0-136886(—2)
30 4-73208 0-999869 0-593436(—3)
32 493206 0-999948 0-246182(—3)
34 5-13205 0-999980 0:977635(—4)
36 5-33205 0-999993 0-371795(—4)
3-8 5-53205 0-999997 0-135471(—4)
40 5-73205 0-999999 0-473319(—5)
42 5-93205 1-00000 0-158868(—5)
4-4 6-13205 1-00000 0-514836(—6)
46 6-33205 1-00000 0-163486(—6)
4-8 6-53205 1-00000 0-529870(—7)
50 6-73205 1-00000 0-193739(—7)
52 6-93205 1-00000 0-931421(—8)
54 7-13205 1-00000 0-617331(—28)
56 7-33205 1-00000 0-489061(—8)
5-8 7-53205 1-00000 0:421223(—8)
6-0 7-73205 1-00000 0-395722(—8)
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Table 3(h). Solution for B = —1, f = (10)}

7 ! I 1
00 3-162277660  0-000000 2-828427126
02 3:20970 0-434615 1-63345
04 3-32409 0-686573 0-946194
06 3-47725 0-831423 0-537362
08 3-65245 0912546 0:295398
10 3-83980 0956377 0-156123
12 4-03361 0979112 0-790724(—1)
1-4 4-23070 0990405 0-383244(—1)
1-6 4-42938 0-995773 0-177680(—1)
1-8 4-62881 0-998214 0-788010(—2)
2:0 4-82858 0-999276 0-334397(-2)
2:2 5-02848 0-999719 0-135820(--2)
2:4 5-22845 0-999895 0-528184(--3)
2:6 5-42843 0-999962 0-196738(—3)
2:8 5:62843 0-999987 0-702252(—4)
30 5-82843 0-999996 0-240440( - 4)
32 6-02843 0-999999 0-791418( - 95)
34 6-22843 0-999999 0-252024( ~5)
36 6-42843 1-:00000 0-791200(—6)
3-8 6-62843 1-00000 0-258411(—6)
40 6-82843 1-00000 0-993131(—7)
42 7-02843 1-00000 0-520742(—7)
44 7-22843 1-00000 0-370644(—7)
4-6 7-42843 1-00000 0-311436(—7)
4-8 7-62843 1-00000 0-279267(—7)
5-0 7-82843 1-00000 0-255180(—7)
52 8-:02843 1-00000 0-233798(—7)
5-4 8-22843 1-00000 0-215687(—7)
5-6 8:42843 1-00000 0-200711(—7)
5-8 8:62843 1-00000 0-186922(—7)
6-0 8-82843 1-00000 0-173875(--7)

believed to be very accurate since each is the
better of a pair, one on either side of the correct
value and differing by only one unit in the last
significant digit.

Using the values of /' given by the computer,
the boundary-layer thicknesses 87 and &) and
the other functions occurring in Table 4 were
calculated. Because the solutions are not very
satisfactory, the distributions of the stream
function and its gradients are not given in the
present paper.

The function E, is a correction to a linear
approximation for the relationship between £,
and A, and is defined by the equation:

F, = 0-44105 — 5-1604 A, — E,.  (101)

When the values of E, obtained from the com-
puter solutions were plotted against 1/8, some



MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS—8 397
Table 4. Solutions to the velocity eguation for the real domain; fy, = 0, B large
o 8% dua ug 483

8 fe af 5; Hy, Hyy Ay = f—cl_x_ 2= a}i E,

1 1-2335877 0-64789 029235 2:2161 0:36035 0-085469 00 00
2 1-6872182 0-49741 0-23080 21552 0-38941 0-10654 —0-10654 —0-00220
3 2:043922 0-41902 0-19671 21301 0-40207 0-11609 —0-15479 -—0-00323
4 2:347284 0-36893 0-17431 21165 0-40916 012154 —0-18230 —0-00382
5 2:615776 0-33336 0-15816 2-1077 0-41371 0-12507 —0-20012 ~0-00426
7 3-083505 0-28514 0-13594 20975 0-41918 0-12937 —0-22177 —0-00476
10 3-675215 0-24076 0-11523 2-0893 0-42351 0-13279 —0-23902 —0-00517
20 5-180604 017212 0-082768 2-0796 0-42879 0-13701 —0-26032 —0-00566
o 1-1547005 0-7785391 03761614  2-069694 0-4343538  0-1414974 —0-2829948 —0-00614

Notes: (1) Solutions for 8 = 1, 2, o« taken from the literature.
(2) The similar co-ordinates for 8 = o are different from those for the other values.

scatter of the points was evident. The points for
B =1, 2, oo and —4 were on a smooth curve,
those for B == 3, 4 and 5 were only slightly dis-
placed from it and those for 8 = 7, 10 and 20
were a considerable distance away. The solution
for 8 = —4, it will be realized, lies in the
imaginary domain and was given by Mangler
[7] (see also Table 1 in Paper 2).

The values of E, were therefore adjusted by
drawing the most acceptable smoothed curve on
this figure and reading off more accurate values.
By means of these and the accurate values of

o » the other functions were recalculated. They
differ from the values first obtained by less than
one unit in the fourth significant digit. The error
still remaining in most of the functions is
believed to be less than three units in the last
digit quoted.

9. INTERPOLATED SOLUTIONS FOR INFINITE B

9.1 General Discussion

Among the similar solutions given in Paper 2,
a set corresponding to infinite B played an
important rdle in the interpolation method em-
ployed. These were solutions to equation (27)
with boundary conditions (28) and were ob-
tained from calculations by Holstein [14]. In
carrying out the interpolations, asymptotic
values of thickness ratios for high blowing rates
as given by Pretsch [4] were used. Since Paper 2
was written it has been found that these asymp-
totic values contain an appreciable error. It

has already been seen in section 4 that the values
are now known exactly.

It has also been possible to treat in the same
way solutions to the other case of infinite 8,
namely equation (31) with boundary conditions
(32), again using calculations by Holstein [14].

The opportunity has therefore been taken to
re-examine these solutions and to draw up a new
set of interpolated values of boundary-layer
functions. These cover a much wider range of
mass-transfer rate than the solutions given in
Paper 2.

9.2 Solutions by Holstein

Holstein [14] gave solutions to equation (27),
with boundary conditions (28), and equation
(31), with boundary conditions (32), in the form
of tables of the velocity df/d¢ (or dé/df) and
shear stress d%8/d¢% (or d%6/d£?) at intervals in
the independent variable £ (or £€). In some cases
the values were at regular intervals in the
independent variable &, in others at regular
intervals in the velocity d/d¢. Solutions were
given for a number of values of the mass-transfer
parameter k, The stream function § does not
occur in the differential equation and was there-
fore not evaluated by Holstein.

In order to obtain the information required
in the present work, it was necessary by
numerical integration of Holstein’s values to
calculate one of the “similar” boundary-layer
thicknesses 8} or &}, which are now defined in
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terms of the similar length co-ordinate ¢£. When
the interval in ¢ was regular, a straightforward
application of Simpson’s rule to values of
[1 — (d8/d£)] supplied the thickness 5. When
the interval was regular in d6/d¢, and therefore
irregular in £, the integration procedure was
modified in the following manner.

(a) When the variables are real

In this case, equation (27) applies and the
main-stream velocity distribution is that which
occurs along the walls of a straight-walled, con-
verging channel. It is convenient here to use
primes to denote differentiation with respect to
the similar distance co-ordinate ¢ defined in
equation (8). In terms of this co-ordinate, the
displacement thickness 37 is defined as:

8t = J7 (1 — 8) dé. (102)

Since df’/d¢ = 6", the integration variable in
this can be changed from £ to ¢’ to give:

a1 —e
&% :j (——,—2 de’. (103)
o 0
This form is suitable for integrating Holstein’s
solutions at regular intervals in &', except that
the value of the integrand in the main-stream
was not given. In its present form this is in-
determinate, but let it be denoted by L. On
differentiation of the numerator and the de-
nominator and substitution for (¢"'/6") from the
differential equation, it is found that:
(1 —e , 9
L = lim (—F,,—r—) =lim — ;5
£~ §— 6
1
= lim —

e ko + (1 — 0) (1 + 0)/6

Since L now also occurs on the right it must
satisfy the equation:

(104)

1
L =kra (105)
and so has the value:
—k k2 12
L= ket (g + 8 (106)

4

The positive sign preceding the square root is
appropriate for Holstein’s solutions.
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(b) When the variables are pure imaginary

In this case, equation (31) applies and the
main-stream velocity distribution is that found
along the walls of a straight-walled, diverging
channel. Proceeding in the same way as above,
if the value of (1 — #')/8" in the main-stream is
denoted by L, it is found to satisfy:

1
L= "_"";;"0’:”2’[1 (107)
and therefore to have the value:
_1; /;2 — )2
[ R E -8 (108)

4
where again the positive sign applies.

This method of integrating the functions given
by Holstein is believed to be quite accurate since
the integrand, when plotted as a function of ¢’,
is only slightly curved and its values at the two
ends of the range of integration are known
accurately. By plotting in this way some scatter
was in fact observed with some of Holstein’s
values near the main-stream. By using a large
scale and drawing a smooth curve through the
most acceptable points, however, this error was
largely eliminated.

Values of the functions obtained from Hol-
stein’s solutions are given in Table 5. In the
first five solutions the quantities k, and 6,
should be denoted by “‘barred™ quantities since
thev refer to solutions to equation (31).

If the values of the thickness ratios Hy, and
H,, in Table 5 are examined, their variation with
the mass-transfer parameter k, is not very
satisfactory for large values of | k,| or | k,|.
This is believed to be due to error in the original
solutions probably brought about by the fact
that the boundary layer is very thin and the
integration interval too large.

It should be noted that no solutions to equa-
tion (31) which behave like real boundary layers
exist for values of | k, | less than 8%/2. The wall
shear 8’ is still quite large for this mass-transfer
rate so it is not because the boundary layer is
about to “‘separate’”. What it does mean is that
only with this minimum amount of suction can a
boundary layer be maintained along the walls
of a diverging channel, otherwise the boundary
condition in the main-stream is contravened.



MASS TRANSFER THROUGH LAMINAR BOUNDARY LAYERS—38

Table 5. Solutions for infinite B

- - Ud ug do
ko(orkp 6, (or%,)  Hy Ha % (=2&)
— 8t 1-9257 1-8888 0-6018 — 0-8839 0-1953
— 4 3-5694 1-989 0-5143 — 0-5763 0-04152
— 6 57372 1-986 0-5048 — 0-5280 0-01549
- 8 7-8070 2:018 04992 — 0-5115 0-008178
—-10 9-8472 1-992 0-5029 — 0:5107 0-005213
10 10-1474 2-030 0-4950 — 0-4878 — 0004746
4 4:3408 2-014 0-4905 — 0-4520 — 0-02555
2 25644 2-:022 0-4789 — 0-3735 — 0-06974
— 2 0-4638 2-163 0-3612 1-558 — 1213
— 4 0-2482 2:218 0-3276 5279 — 3:484
—10 0-1000 2202 0-3106 31-06 — 19-59

Functions evaluated from solutions given by Holstein [14]. Those in the first

five lines apply to equation (31), the remainder to equation (27).

Table 6. Interpolated solutions for infinite B

v - - 82 duc

072 Hy, - Hy, ko (or ko) 6y (or 6y”) Ay = ;2&
—0-8839 1-8888 0-6018 2-828 1-926 —0-09765
—0-85 1-9011 0-5885 2-831 1-960 —0-09014
—0-80 1-9198 0-5710 2-856 2-039 —0-07843
—0-75 19369 0-5556 2:915 2-159 —0-06619
—0-70 1-9520 0-5420 3-026 2:343 —0-05352
—0-65 1-9658 0-5300 3-226 2:630 —0-04046
—0-60 1-9786 0-5190 3-641 3-149 —0-02716
—0-55 1-9892 0-5085 4-677 4-324 —0-01382
—0-54 1-991 0-5065 5-104 4-787 —0-01120
—0-53 1-993 0-5048 5778 5-501 —0-00842
—0:52 1-996 0-5032 6-945 6-721 —0-00561
—0:51 1-998 0-5016 9-635 9-477 —0-00280
—0-50 2-000 0-5000 o o 0-0
—049 2-002 0-4980 9-492 9-647 0-00266
—0-48 2004 0-4960 6:577 6796 0-00533
—0-47 2006 0-4940 5-260 5:529 0-00798
—046 2-007 0-4923 4-440 4752 0-01074
—0-45 2-009 0-4905 3-879 4-228 0-01346
—0-40 2-018 0-4824 2:421 2:920 002730
—0-35 2-026 0-4750 1-722 2-338 004131
—0-30 2034 0-4680 1-275 1-989 0-05537
—025 2:042 0-4614 0-9483 1-750 0-06949
—0-20 2048 0-4551 0-6913 1-573 0-08369
—015 2054 0-4492 0-4792 1-435 0-09797
—010 2:059 0-4439 0-2982 1-324 0-11242
—0-05 2:064 0-4389 0-1403 1-232 0-1269
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Table 6.—continued

2
%oy Hy, Hy ko(or k) 67 (orde) 2, 20
v v dx
00 2:06969 0-434354 00 1:15470 0141497
01 2078 0-4261 —0:2419 1031 01709
02 2:087 04192 —0-4466 0936 0-2006
03 2:094 0-4130 —0-6249 0-8603 02305
04 2:101 0-4068 —0-7842 07975 02602
05 2108 04010 —09286 0-7448 0-2899
06 2114 0-3960 —1-609 07002 0-3198
07 2120 0-3909 —1-184 06611 0-3496
08 2126 0-3864 —1-299 06272 0-3795
09 2131 0-3822 —1-406 0-5972 0-4095
10 2:137 0-3783 ~1-509 0-5707 0-4394
12 2:147 0-3715 —1-698 05257 0-4994
14 2156 0-3654 —1:872 0-4886 0-5594
16 2165 0-3603 —2:033 0-4578 06194
18 2172 0-3559 —2:183 04317 06797
2:0 2178 0-3522 —2:325 0-4094 0-7402
22 2183 0-3491 —2:458 0-3901 0-8009
24 2187 0-3464 —2:585 0-3732 08618
26 2191 0-3440 ~2:707 0-3581 09226
2:8 2:195 0-3419 —2:824 0-3448 0-9834
30 2:198 0-3400 —2:936 03327 1-0444
35 2:204 0-3361 ~3-199 03072 11197
40 2:209 0-3330 —3.442 0-2866 1350
45 2213 0-3305 —3670 0-2696 -503
50 2216 0-3285 —3-884 0-2552 1657
6 2:221 0-3252 —4.282 02321 1964
7 2:225 03227 —4-646 02142 2:271
8 2:229 0-3208 —4:984 01998 2:577
9 2233 0-3193 —5:301 0-1881 2883
10 2:235 03182 5599 0-1782 3190
20 2:246 0-3126 —7:995 01250 6258
« 2:25889 0-306853 o 00 »

Solutions in the range —0-8839 < v48,/v << —0-5 apply to equation (31) for which column 4 gives

k; and column 5 gives fy’’; those in the range —0-5 < v,8,/v < o0 apply to equation (27) for which

column 4 gives k, and column 5 gives 6;".

Referring to equation (108), this means that the
function L, is real only when | k, | > 8V2,

9.3 Interpolation

The solutions contained in Table 5 are quite
suitable for interpolation since, in addition to
those quoted, the following three solutions for
infinite S are also known exactly: (i) the case of
infinite suction, (ii) the case k, = 0 in equation
(27) (see Paper 7) and (iii) the case of infinite
blowing treated in section 4.4.

With the quantity (v48,/v) as variable, or its

reciprocal when considering intensive blowing,
interpolated values of the thickness ratios H;; and
H,, were therefore obtained and other functions
calculated from them. The results are given in
Table 6, where the function F;, is not given since
it is simply —2A,.

The accuracy of the values in this table is
about the same as the interpolated solutions
given in Paper 2; the values of the thickness
ratios should be better than +4-0-3 per cent
everywhere. Where any quantities in this table
differ from those given in Paper 2, the present
values are to be preferred.
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FiG. 2. Intensive blowing: F, as a function of A, with v,8,/v as mass-transfer parameter.
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FiG. 3. Intensive blowing: H,, as a function of A, with v,8,/v as mass-transfer parameter.
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10. VARIATION OF F, AND H,, WITH ), FOR
INTENSIVE BLOWING

In the method of boundary-layer analysis
contained in Papers 1 and 2, curves were
required showing the variation with the pressure-
gradient parameter A, of the growth function F,
and the thickness ratio H,,. The highest blowing
rate included in the interpolated solutions of
Paper 2 was for (vy8,/v) = 3:0. By means of the
method to be explained below, these curves are
extended to (v¢y/v) == 200 with the results
shown in Figs. 2 and 3.

The shapes of the curves showing the variation
of F, were first obtained by assuming that the
thickness ratios H,, and H,, had the asymptotic
values for high blowing rates given in Table 1.
These curves cut the vertical axis, where the
pressure gradient is zero, at the exact value,
since it is known that, when the blowing rate is
large enough, F, = 2(v48,/v) along that line.
For any other pressure gradient, however, these
preliminary curves were displaced from the
correct position.

By interpolation along the lines 8 == 1-0 and
B = oo, their positions were obtained more
accurately in this region. While retaining the
same general shape the preliminary curves were
then displaced so as to pass through the inter-
polated points. In the final form of the curves
given in Fig. 2, the accuracy is believed to be
such that the position of any point is correct to
within 43 per cent of its distance from the origin.

Very few exact solutions to the equations occur
in this region and most of them are shown in
Fig. 2 with values of the parameter (v,3,/v)
nearby.

Curves for H,, shown in Fig. 3 were easier to
draw, since, on this scale, the origin and inter-
polated points for 8 = 1:0 and B = oo were in
the same straight line for almost all the values of
(v48,/v) covered. The solution for (v,8,/v) = 4-316,
obtained by Schlichting and Bussman [6], is
seen to be slightly displaced from the line 8 = 1-0
in Fig. 3. In view of the great difficulty of ob-
taining exact solutions in this region it is not
surprising that this solution contains some error.*
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APPENDIX A
Boundary-layer Functions for High Rates of Mass
Transfer
The results obtained in section 4 are sum-
marized below.

(a) Intensive suction
From equation (50) of the text, the stream
function fhas the form:

1 ;
S=Fotn— g (d=eon. (A1)

The velocity distribution in the boundary layer
is:
u

e = (I —e 7o) (A2)
and the wall gradient is:
1" =/ (A3)

The other boundary-layer functions have the
following values:

oSy ] -1, \L

v (Ad)
H12 = 2, F2 = AZ = 0.

(b) Intensive blowing when B is not infinite

From equation (76) of the text the velocity
distribution is:

u f 23172
P U PO N
and the dimensionless wall shear is:
. B
Y= A6
fo fﬂ ( )

H. L. EVANS

The thickness ratio H,, has the value:

a'® I'(1/28)
Moo =P =4 Ty + 11280
and the other ratios are obtained from this by
means of:
1
(i

H24

(A7)

Hyy = :) (A%)

B,
and
S
Hyy =1 —(1 +B) Has.

(A9)

The ratio H,, is related to the pressure gradient
parameter A, by:

v
Numerical values of these thickness ratios are
given in Table 1.

(¢) Intensive blowing when 8 is infinite
The stream function has the form:

8 = — kyln (cosh ~ f) (AL1)
. ky.
and the velocity distribution is:
uo ’4 §)
= tanh( ) (A12)

The thickness ratios have the following values:

. In2
H24 = (I —In 2}, H14 =ln 2, ng = (li’l*nz).
(A13)
APPENDIX B

Solving Equation (18) on a Computer
With the following definitions:

p=f (B1)
g =f (B2)
re=f (B3)

equation (18) is reduced to the following set of
simultaneous first-order differential equations:
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dy

ay ~ | (B4)
dp

dy = q (BS)
dg

d—n— = (B6)
dr .
a;}z—l)r—ﬁ(l—q)- (B7)

It should be noted that the quantity s = [* fdy,
which is important in evaluating solutions to the
b-equation (see earlier papers in the present
series) can also be evaluated. Since its gradient
with respect to 7 is f, this merely means adding
the equation ds/dy = p to this set.

Although equation (B4) appears to be trivial,
the method to be described requires it. Equations
(B4-7) apply to the real domain; to work in the
imaginary domain the only change required is to
alter the sign of the right-hand side of equation
(B7).

The initial conditions are:

M0 =0 (B8)
Po=ro (B9)
90 =0 (B10)
re =1y (B11)

The set of equations (B4-7) is now solved
numerically at regular intervals in the variable
by means of the following Runge-Kutta process
developed by Gill {15]. Each of the four equa-
tions is of the form:

dw,

d—n_l = h; (W1, Wa, W3, Wy)
where w; is one of the variables v, p, g or r, and
the function A;, written in (B12) as a function of
the variables w;, represents the right-hand side
of the relevant equation.

Let the magnitude of the interval in % be e.
The values of the variables w at the beginning
of an interval being known, the value of any one
of them, say w;, at the end of the interval is
obtained by a routine consisting of four stages.
The stages all have the same form but each
employs a different set of numerical coefficients.

(B12)
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Using a second suffix j to denote a particular
stage, at each stage the following functions
are evaluated:

Si, 5 = ehi(wy, j, Wo, j, W, s s, ;) (B13)
m;, s = A;8;, 5 — Bty ; (B14)
Wi, j+1 = Wy, 5 + My, (B15)

Ly g =i, 5+ 3my, 0 — G5y (B16)

in which the numerical coefficients A;, B; and C;
take the following values for the four stages:

j A4; B G
0 1/2 1 172
1 A-1v2 Q=12 (d-1v2
2 A+ 1/v2) A+1/v2) A+ 1/4/2)
3 1/6 1/3 12

At the end of each fourth stage (j = 3) the
quantities ¢;, , and w,, , obtained from equations
(B15) and (B16) are retained and used at the
beginning of the next interval. The quantities
m,, ;+, are used only within a particular stage
and so are not retained. The quantity w;, , is,
of course, the new value of the function w;.

The operations within each interval are carried
out in the following order:

j= i=1,2734
j=1 i=12234
j=2 i=123,4
j=3 i=1,2734.
APPENDIX C

Gradients of the Stream Function

In boundary-layer theory it is often useful to
obtain expansions of the stream function, or one
of its derivatives, about some point either within
the boundary layer or at its extremities. Ex-
pansions about the wall have, for example, been
used in several of the earlier papers in the
present series.

To obtain such expansions, many derivatives
of the stream function are required. Knowing the
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value of the stream function and its first two
derivatives, the third derivative is obtained
simply by substituting these into the differential
equation, namely the first expression in the list
given below. Derivatives of higher order are then
obtained by substituting the lower-order deriva-
tives into expressions obtained by successive
differentiation of the differential equation.

H. L. EVANS

The expressions for evaluating derivatives up
to fXV for similar solutions are given below.
In these the negative signs on the left-hand sides
should be used for the real domain and the
positive signs for the imaginary domain. In the
nomenclature of the present paper these quan-
tities should be denoted by “barred” quantities
when working in the imaginary domain.

e I - (0

FIY = A=

IV =V Q=2 =28 (f7F
T =V AG =B SV 4 — 6B
:FfVII

= FVI @ —28)/ [V + (T =8+ (4 — 6B) (/)

TSV =Y+ =28V + (1 =108 " f¥ + (15— 208) /" f TV

:FfIX

+ (15 — 208) (1)
X

+ (56 — 708) 1V /¥
:FfXI

= VUL (6 — 2B) £ fVIL + (16 — 128) £ VT + (26 — 308) " fV
— X 4 (7 = 2B) £ fVIE + (22 — 14B) £ fVIE (42 — 42B) " £

— X+ @ = 20)f f1X + (29 — 166) " {VIT 4 (64 — S68) /" f V1

+ (98 — 1128) f1V fVE + (56 — 708) (fV)?

FAL — X149 28) /£ + (3T — 189) £ f1X + (93 — 728) f ' f VI
+ (162 — 1688) f1V £ VIT 4 (210 — 3528) fV f V1

TR — NI (10 — 2) £ £X0 4 (46 — 208)f X + (130 — 90B) " f1
+ (255 — 2408) 1V VI + (372 — 4208) fV £ VI + (210 — 2528) (S VI

FAXV = X L (11— 28) 7 fXU 4 (56 — 226) £ X1 + (176 — 110B) " £
+ (385 — 3308) fIV fIX 4 (627 — 6608) £V £ VIIL 4 (792 — 924f) £ VI £ VII

:FfXV

=XV £ (12 — 28) £ fXI + (67 — 24B) /" f X114 (232 — 1328) f"" f X1

+ (561 — 4408) f1V X - (1012 — 990B) fV f1X
+ (1419 — 1584B) fVIf VI 4 (792 — 9248) (fVT1)*.

Zusammenfassung—Es werden Probleme der hydrodynamischen Grenzschicht behandelt, fiir den
Fall einheitlicher Stoffwerte und Stofftransport in beliebiger Richtung durch die wandnahe Schicht.
Zur Nachpriifung des asymptotischen Verhaltens der Grenzschichtfunktionen bei grossem Stoff-
durchsatz dient die “dhnliche” Form der Geschwindigkeitsgleichung. Die Verhiltnisse der Grenz-
schichtdicken bei intensiver Anblasung H,,, f;, und H,, sind tabelliert.

Die in der Rechenmaschine verwendete Integrationsmethode ist beschrieben und folgende nume-
rische Losungen sind angegeben: (1) Exakte Losungen fiir 8 = 1, den vorderen Staupunkt der
zweidimensionalen Stromung, wobei der Stoffiibergang-Parameter f;, dreizehn verschiedene Werte
— 3,0 < f; < 3,0 annahm. (2) Exakte Losungen fiir § = — 1 im reellen Bereich, bei acht Werten von £
von /2 am Trennpunkt, bis /10 bei asymptotischer Anniherung an das Unterdruckgebiet. (3)
Losungen von etwas geringerer Genauigkeit fiir den reellen Bereich ohne Stofftransport, bei grossen
B-Werten. (4) Interpolationslsungen fiir unendliche Werte von'8 mit Stofftransport ; dabei sind sowohl
reelle wie imagindre Werte der Variablen beriicksichtigt.
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Um die Abhiingigkeit von F,, des Anwachsens der Geschwindigkeitsgrenzschicht, vom Druck-
gradienten, und die Anderung des Dickenverhiltnisses H, fiir einen Bereich des Stoffdurchsatzes von
0 < (ve8,/v) < 20,0 zu zeigen, sind Kurven angegeben. Ein Anhang bringt Formeln zur Auswertung

hoherer Ableitungen der Stromfunktion.

AmBOoTamMa—PaccMaTpuBaeTca 3aflada 0 AUEAMUYECKOM NMOTPAHMYHOM CJI0€ C IMOCTOAHHEIMH
¢u3MYEeCKNMU IapaMeTpaMH Cpefsl NpH Mofade (IOTJIOLIEHHH) BellleCTBA 4Yepes CTeHKY
obreraemoro tena. «[lomo6Hbe» pemenud ypaBHeHUA ABMKEHUA UCIIOIL3YIOTCA IJIA NOIYyYeHUA
aCHMITOTHYECKUX BHIPA/KEHUI paHee MOJYYEHHHIX BCIOMOTATENBHHX (PYHKUMI (yCTOBHBIX
TOJIIMHE NOTPAHMYHOTO CJIOA) Npu GOJBIIUX NIOTHOCTAX IOMEPeYHOro IOTOKA BelecTBa.
Hanws Tabmunm sennunn Hyy, Hi, u Hyy 10 3HAYNTENbHBIX MHTEHCHBHOCTEH MOJIaBuaeMOro
Yepe3 CTEHKY BellleCTBA.

Onucan MeToJ, MHTErPUPOBAHMA YPABHEHUA HA CUBTHO-pemalomeM npubope u JaHB!
cliefylolue YNCIEHHbIe PelleHnsA:

(1) Tounsie pewrenna gis B = 1 (HepefHAA KPUTHYECKAA TOYKA ABYXMEPHOrO NOTOKA) M
fo= —3,0{0,5) 3,0 (Bcero TPpMHAALATL 3HAUCHHUI);

(2) Tounee pemteHua AaAs B = —1 ¥ BOCHMH BHAYeHHil fo OT +/2 B TOYKe OTPHIBA 1O
BeJIMUMHEL 1/10, COOTBETCTBYIOIEN ACHMITOTUYECKOMY OTCACHIBAHUIO;

(3) Hecronpxo ycTynaioue NpemblAYIIMM O TOYHOCTU pelleHUA B JAeMCTBUTEIBHOIN
00J1aCTH IIPY OTCYTCTBMM MaccooGMeHa v GOJIbINNX BHAYEHUAX B;

(4) nTepmonmpoBaHHble pemieHnA NMpu B = o0 u Hajm4mm MaccooOMeHa. B aTy coBoky-
TMHOCTb BXOAAT KaK AelfiCTBUTeJIbHbIe, TAK I MHUMble 3HAYEHUA HMePEMEeHHBIX,

Janbl rpaguKH KPUBHX, KOTOPHe NTOKA3HBAIOT M3MeHeHNe yHKIuK F2, XapakTepusyouiei
TEeMII HApaCcTaHMA TMOTPAHMYHOIC CJIOA, M TOJWUHH H,y TIpH pasIMYHEEIX TpajueHTaX
OABJIEHUA, KOTXA MHTEHCHMBHOCTH MaccooGMeHa AemuT B npepenax 0 < (vod2fv) < 20,0. B
IPUJIOKeHUM JaloTcA QOPMYNH A pacyéTa Npou3BOAHHIX GoJiee BHICOKUX MNOPHAKOB OT

PYHKIMH TOKA.
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