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Abstract-The paper is concerned with the velocity boundary layer when the fluid properties are 
uniform and mass is transferred in either direction through the wall boundary. The “similar” form 
of the velocity equation is used to examine the asymptotic behaviour of boundary-layer functions for 
large mass-transfer rates. The values of the thickness ratios H r4, Hiz and Hzp for intensive blowing 
are tabulated. 

The method used for integrating the equation on a computer is described, and the following numeri- 
cal solutions are given. (1) Accurate solutions for ji = 1, the forward stagnation point for two-dimen- 
sional flow, the mass-transfer parameterf” being given the thirteen values -3-O (0.5) 3.0. (2) Accurate 
solutions for p = -1 in the real domain; the mass-transfer parameter fo takes eight values from 
d/2 at the separation point to 410, which is approaching asymptotic suction. (3) Solutions of slightly 
tower accuracy in the real domain for zero mass transfer when (3 has Iarge values. (4) Interpolated 
solutions when /I is infinite, which include the effect of mass transfer; for this set both real and 
imaginary values of the variables are included. 

Curves are drawn showing the variation with pressure gradient of the rate-of-growth function Fz 
and the thickness ratio Hz4 for mass-transfer rates in the range 0 Q (uO &/v) Q 20.0. In an Appendix, 

formulae are given for evaluating high-order derivatives of the stream function. 

Where the quantities in the following list have 
dimensions these are given in brackets after the 
definitions; otherwise they are dimensionless. 
The symbols used in Appendices B and C are 
not included. 

constant occurring in equation (7); 
a correction to the linear approximation 
for the relationship between F2 and h, 
when mass transfer is zero, defined by 
equation (101); 
function giving the rate of growth of the 
momen~m thickness with distance x, 
defined in equation (44) ; 
dimensionless stream function defined 
by equation (17) ; 
value of f at the wall boundary ; a 
measure of the rate at which mass flows 
through the wall and related to the 
velocity z+, by equation (20) ; 

second derivative off with respect to ‘1 
evaluated at the wall boundary; a 
measure of the shear stress at the wall; 
the real form of f in the imaginary 
domain, defined in equation (21); 
the real form of f0 in the imaginary 
domain, related to the velocity ug by 
equation (24) ; 
ratio of displacement to momentum 
boundary-layer thickness; for similar 
solutions detied by equation (40); 
ratio of displacement to shear boundary- 
layer thickness; for similar solutions it 
is ST/S: ; 
ratio of momentum to shear boundary- 
layer thickness; for similar solutions 
defined by equation (41); 
mass-transfer parameter for the case 
when B is infinite (see Section 2.3); 
related to the velocity V@ by equation 
(24); 
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PO, 

L 

L 

Greek 
P, 

6 1‘ 

6” 1’ 

the real form of k,, in the imaginary 
domain, related to the velocity l’,, by. 
equation (33); 
value of (1 - f?‘)/S” in the main-stream. 
related to the parameter F;, by equation 

(106); 
value of (1 -- of)/&’ in the main-stream. 
related to the parameter f, by equation 

(108); 
constant occurring in equation (7) ; 
velocity component parallel to the wall 
(ftlh); 
value of u in the main-stream (ft/h) ; 
velocity component perpendicular to the 
wall (ft/h) ; 
value of D at the wall (ft/h); 
distance parallel to the wall measured 
from the start of the boundary layer (ft): 
distance perpendicular to the wall 
measured from the wall towards the 
main-stream (ft). 

symbols 
parameter occurring in the similar form 
of the velocity equation ; defined by 
equation (15) ; 
displacement boundary-layer thickness 
= s; (I -- @G)dy, (ft); 
displacement boundary-layer thickness 
in terms of the appropriate similar 
length co-ordinate; when the latter is 77 
it is defined by equation (34); 
momentum boundary-layer thickness 
= ju” (U/uG)(l - +G) dy. (ft); 
moments boundary-layer thickness in 
terms of the appropriate similar length 
co-ordinate; when the latter is 17 it is 
defined by equation (35) ; 
shear boundary-layer thickness 

= UG/(a+y)~y,m (ft); 

shear boundary-layer thickness in similar 
co-ordinates; an alternative expression 
for l/f,“; 
dimensionless stream function defined 
by equation (9) ; 
value of i at the wall boundary; a 
measure of the rate at which mass flows 
through the wall and related to the 

dimensionless similar length co-ordinate 
defined by equation (16) ; 
real form of ‘7 in the imaginary domain: 
defined in equation (2 1) ; 
stream function for the case of infinite 13 
for real values of the variables, defined 
as (5 --- Co): 
real form of 0 when the variables are 
pure imaginary, defined in equation (29 1: 
pressure-gradient parameter relating to 
the momentum thickness; defined in 
equation (43) ; 
kinematic viscosity of fluid (ft’jh); 
dimensionless similar length co-ordinate. 
defined by equation (8); 
real form of [ when the variables are 
pure imaginary, defined in equation (29) : 
dinlensionless stream function for in- 
tensive blowing, defined by equation 

(60); 
value of 1 at the wall boundary: 
dimensionless stream function for in- 
tensive suction. defined by equation (46) : 
diInensiol~less stream function for in- 
tensive blowing for the case when j5’ is 
infinite, defined by equation (8 1) ; 
dimensionless similar length co-ordinate 
for intensive blowing, defined by equa- 
tion (59); 
dimensionless similar length co-ordinate 
for intensive suction, defined by equa- 
tion (45) : 
dimensionless similar length co-ordinate 
for intensive blowing for the case when 13 
is infinite. defined by equation (80); 
stream function defined by equation (4) 
(ft”/h). 

1. INTRODUCTION 

1.1 Earlier Work 
THE first two papers in the present series con- 
sidered the velocity equation of the laminar 
boundary layer when mass flows in either direc- 
tion through the wall boundary. Paper 1. 
Spalding [I], presented a method of estimating 
boundary-layer thicknesses and the shear stress 
at the wall for any two-dimensional, laminar 
boundary layer for which the fluid properties are 
uniform, provided the distributions along the 

velocity L’~ by equation (14): wall of the following two quantities are specified : 
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fB) the pressure gradient in the main-stream, 
and 

(ii,) t.lrate at which mass flows through the 

In order to apply this method, “similar” solu- 
tions to the boundary-layer equations are 
required in the form of numerical tables. For 
application to practical problems, these solu- 
tions must cover wide ranges in the parameters 
specifying the two quantities mentioned above. 

All such solutions which could be found in the 
literature were tabulated in Paper 2, Spalding 
and Evans 12 J, where it was shown that “similar” 
solutions exist both for real and for pure ima- 
ginary values of the variables. 

Although many solutions were available, they 
were fairly widely scattered, most of them occur- 
ring in that part of the real domain relating to 
accelerated main-streams. Enough solutions were 
found in this region to cover much of it by 
interpolation between the exact points. By 
interpolating for ratios of boundary-layer thick- 
nesses. which in this region vary comparatively 
slowly with mass-transfer rate, the accuracy was 
expected to be better than 10.3 per cent of the 
values given. 

Work done since Paper 2 was written has 
shown that the accuracy of the interpolated 
solutions for no mass transfer and for suction 
is as good as this estimate. The solutions for 
blowing. on the other hand, are less accurate, 
the greatest error in the thickness ratios probably 
approaching fl per cent of the values given. 
The interpolation procedures involved the use of 
the asymptotic values of thickness ratios for 
intensive blowing, and a large part of the error 
in the interpolated solutions is now thought to be 
due to inaccuracy in these asymptotic values. 
The latter ore given to high accuracy in Table 1 
of the present paper. 

Wide areas which are of practical interest 
were. however, very sparsely covered in the 
literature. Except for a series of exact points for 
thz case of no mass transfer and a few points of 
low accuracy for slight deceleration with mass 
transfer. the region of decelerated main-streams 
contained very few solutions. The imaginary 
domain had received even less attention, since 
only t\vo solutions, both on the line for no mass 
transfer. were known in that region. 

Paper 7, Evans [3], contained some solutions 
for the case of no mass transfer in the real 
domain which were more accurate than those 
given in earlier papers. 

1.2 Outline of Present Paper 
The present paper is concerned exclusively 

with the velocity boundary layer and reports 
advances which have been made since the earlier 
papers in the series were written. In particular, 
a number of similar solutions are given, most 
of which are new. These are indicated diagram- 
matically on the F,-A, plane in Fig. 1. 

FIG. 1. Illustrating diagrammatically on the F,-A, 
plane the solutions given in the present paper. a-- 
asymptotic blowing in the real domain (Section 4); 
k-asymptotic blowing in the imaginary domain 
(Section 4); c-two-dimensional forward stagnation 
point, g = 1 (Section 6); c&--j? = -1 in the real 
domain (Section 7) ; e-high values of fl for f0 = 0 in 
the real domain (Section 8);&-interpolated solutions 
for infinite fi when variables are pure imaginary 
(Section 9); ~--interpolated solutions for infinite p 

when variables are real (Section 9). 

In section 2 the forms of the similar velocity 
equation for real and pure imaginary values of 
the variables are given, and section 3 contains 



relationships which are used to evaluate func- 
tions required in the present work from tables 
of numerical solutions. 

Section 4 is concerned with the asymptotic 
behaviour of the boundary layer when the rate of 
mass transfer through the wall boundary 
becomes very large. The case of inward mass 
transfer is only briefly discussed, as this has 
already received detailed treatment in the 
literature. The case of outward mass transfer is 
considered in greater detail. 

After the asymptotic form of the differential 
equation is derived, formulae are obtained for the 
asymptotic values of ,&” and the thickness ratios 
H,,, HI2 and Hz4. A table of these ratios is then 
given for suitable values of the parameter /3 in 
both the real and the imaginary domains. 
These asymptotic solutions are indicated in 
Fig. I by the radiating lines outside the unit 
circle: some values of fi have been omitted for 
clarity. The real domain is indicated by n and the 
imaginary domain by b. 

The two cases when /3 is infinite are considered 
in section 9. Interpolated solutions are given 
which cover a wider range of mass-transfer rate 
than those contained in Paper 2. As the solutions 
are not to high accuracy, they are represented by 
a broken line in Fig. 1, the portion g of this line 
indicating the solution for real values of the 
variables and the portion .f that when the 
variables are pure imaginary. 

2. FORMS OF THE VELOCITY EQUATION 

The velocity equation is extremely difficult to 
integrate for high rates of outward mass transfer. 
It should, however, be easier to integrate the 
transformed equation given in section 4, either 
by the usual numerical methods or by obtaining 
asymptotic expansions in inverse powers of the 
mass-transfer parameter fO. 

The method used for obtaining numerical 
solutions with a computer is described in section 
5 and Appendix B. 

and the continuity equation is: 

Solutions for the two-dimensional forward 
stagnation point with mass transfer are given in 
section 6. Most of these are new and are, in 
general, more accurate than the solutions for 
this case quoted in Paper 2. These solutions 
occur along the line c in Fig. 1. 

When /3 =:z - 1, it was found that the wall 
shear fO” is a simple function of the mass- 
transfer parameter ,fO. This meant that solutions 
could be obtained on a computer with relative 
ease. Solutions in the real domain are given in 
section 7 and occur along the line din Fig. 1; the 
imaginary domain for this value of fl is not con- 
sidered in the present paper. 

Section 8 contains solutions in the real domain 
for zero mass transfer and high values of the 
parameter /3. These occur along the line e in 
Fig. 1. 

376 H. L. EVANS 

IN SIMILAR CO-ORDINATES 

2.1 Transforming the Co-ordinates 
Later parts of the present paper will contain 

some discussion of the behaviour of the velocity 
boundary layer, and in many places in this 
discussion it will be necessary to refer to equa- 
tions and quantities which occur in the trans- 
formation of the boundary-layer equations to 
similar co-ordinates. The transformation, in the 
form first given by Spalding [I], is therefore 
given below. For further discussion of the 
general behaviour of boundary-layer functions 
and the roles played by various parameters, the 
reader is referred to earlier papers in the series, 
particularly Papers 1 and 2. 

For two-dimensional, laminar flow with 
uniform fluid properties, the equation of motion 
for fluid in the boundary layer is: 

ln these equations: 

X -= distance measured parallel to the wall, 
_Y = distance measured perpendicular to the 

wall towards the main-stream, 
u = velocity component in the x-direction, 
uc = value of u in the main-stream, 
I‘ = velocity component in the y-direction, 

and 
= kinematic viscosity of the fluid. 

When mass flows through the wall with 
velocity vO, the boundary conditions associated 
with eauations (1) and (2) are: 
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\’ = 0, u = 0, z? = 1’0 

Y-f =, u-+uG. 
(3) 

The value of z’~ is positive when in the positive 
y-direction. 

Equations (1) and (2) are combined by 
ducing the stream function $I defined by: 

alL alL 
’ @=---’ u = 6’ Px’ 

intro- 

(4) 

so that equation (2) is automatically satisfied and 
equation (1) becomes : 

a* aqll 6* a2* duo a”* 

zy a? 
- -=UGctVay3 
2x 2y 

(5) 

and the boundary conditions from equation (3) 
are : 

Solution of equation (5) with boundary con- 
ditions (6) for a general distribution with x of 
the functions uo and uO is rarely attempted. For 
certain physical configurations known as 
“similar” systems, however, these distributions 
are such that the equation reduces to an ordinary 
differential equation which, although only 
rarely soluble analytically, may be integrated 
accurately by numerical methods. 

It was shown in Paper 1 that equation (5) 
possesses similar solutions when the main- 
stream velocity obeys the relation : 

dUG 
dx=Cu; 

where C and n are constants. 
If the independent length co-ordinate is taken 

as: 

(8) 

and the new stream function 5, which is a 
function of 8 alone, is related to I,J by: 

(9) 

the velocity components take the form: 

(10) 

(11) 

Using the transformation defined by equations 
(8) and (9) equation (5) then becomes: 

1”’ + (1 - n/2)55” + (1 

with boundary conditions: 

5 = 0, 5 = 50, 
5+x), <‘+l. 

- 5’2) = 0 (12) 

<‘=O 

I- (13) 

The primes in equations (12) and (13) denote 
differentiation with respect to 5. 

For similar solutions, the quantity &, occur- 
ring in equation (13) is a constant. From equa- 
tion (11) this is related to the velocity o,,, at 
which mass flows through the wall boundary, by : 

lo = [l - (n/2)] I::;duo/dx))1”2 

so that u. varies along the wall as x*/2. 
Equation (12), with boundary conditions (13) 

represents one form of the velocity equation in 
similar co-ordinates. This will be referred to 
later. The form generally found in the literature 
and used in the preceding papers of the present 
series is obtained by using a slightly different 
transformation from that specified by equations 
(8) and (9). 

If the parameter n is replaced by the parameter 
j3, defined by: 

1 

’ = [l - (n/2)]’ 

and the transformation : 

(15) 

(16) 

(17) 

is used, equation (5) then takes the familiar 
form : 

f”’ +fl” +B(l -f’2) =o 1 (18) - 
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with boundary conditions : 

where the primes in equations (18) and (19) 
denote differentiation with respect to T. 

Although boundary conditions (19) are suffi- 
cient to define the mathematical problem, other 
supplementary conditions are often useful and 
sometimes necessary in order to obtain unique 
solutions. Two such conditions are: 

0 :< J” :> 1 everywhere, and 

f’i 1 exponentially as 7 - X. 
’ (19a) 
1 

The first of these ensures that the solutions con- 
form with real boundary layers, since it ex- 
cludes solutions involving reversal of flow (i.e. 
negative f ') as well as those involving velocities 
in the boundary layer exceeding that in the 
main-stream (i.e. ,f” > 1). All the solutions 
considered in the present series of papers satisfy 
this condition. 

The second of the supplementary conditions 

(19a), which specifies a sufficiently rapid 
approach to main-stream flow, is sometimes 
required in order to ensure that the solution 
is unique. 

For the form of the velocity equation given in 
equation (18), the relationship corresponding to 
equation (14) is : 

Most of the following discussion of laminar 
boundary layers with mass transfer will refer to 
equation (18) with boundary conditions (19). 

2.2 The Form of the Equation in the lmaginnr!. 
Domain 

When the parameter fl and the main-stream 
velocity gradient duo/dx have opposite signs in 
the transformation defined by equations (16) 
and (17), both 71 and ,f are pure imaginary. To 
obtain the differential equation and boundary 
conditions for this imaginary domain, new real 
variables ?j and fare defined by: 

Inserting these into equation (18) gives: The differential equation for infinite /3 is then 

and the boundary conditions (19) become: 

In equations (22) and (23) the primes denote 
differentiation with respect to the new indepen- 
dent variable +j. 

It is important to realize that in the imaginary 
domainfO and v,, have the same sign, contrary to 
that in the real domain, so that the relationship 
corresponding to equation (20) is: 

2.3 The Equation when p is Injinite 
(a) When the variables are real 

Consider the relation between the parameter 
n in equation (12) and the parameter ,B in equa- 
tion (18). When the parameter n passes through 
the value n =- 2, equation (15) shows that p 
undergoes an infinite discontinuity, being large 
and positive when n < 2 and large and negative 
when n > 2. This case of infinite /I was shown in 
Paper 2 to form the dividing line between the 
real and imaginary domains for solutions to 
equation (18). 

Clearly, equation (18) cannot be used to 
evaluate numerical solutions for this case since 
the transformations defined by equations (16) 
and (17) are not then valid. The appropriate 
differential equation for this limiting case can, 
however, be deduced from equation (12). 

If a new independent variable 0 = (5 - 5,) is 
introduced into equation (12), where { is defined 
in equation (9) and [,, in equation (14). since <, 
is a constant. the equation becomes: 

d’B 
+k,&- 1- (25) 

where k, is a mass-transfer parameter defined by: 

(26) 
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obtained by putting M = 2 into equation (25), 
giving : 

and the boundary conditions associated 
are : 

(27) 

with it 

(28) 

Equation (27) with boundary conditions (28) 
holds when p tends to +co, from below in 
the real domain, or to -co, from above in the 
imaginary domain. 

When no mass flows through the wall boun- 
dary, the parameter k, is zero and so is the 
second term in equation (27). The solution for 
this case is well-known and accurate values of 
the boundary-layer functions were given in 
Paper 7. Evans [3]. 

(b) I3 ‘hetl the variables are imaginary 
When the velocity gradient duo/dx is negative, 

the variables 5 and 5 defined in equations (8) and 
(9) are pure imaginary. The equation for infinite 
p for this case is again obtained by substituting 
in equation (27) new variables 6 and 4 defined by: 

f = i[ 
e = ie 

and replacing the constant k, by the constant LO 
defined by: 

k, = ii&-,. (30) 

This g,i\ es: 

with boundary conditions: 

The relationship between the constant R, and the 
velocity CO is: 

--- 
‘O = [v (dux:;dx)]1,2’ (33) 

Equation (31) with boundary conditions (32) 
hoIds when ,R tends to -co, from above in 
the real domain, or to +30, from below in the 
imaginary domain. 

3. RELATIONSHIPS BETWEEN FUNCTIONS OF 

THE VELOCITY LAYER 

In Paper 2, Spalding and Evans [2], many 
formulae were given involving functions of the 
velocity boundary layer. Some of these formulae 
gave relationships between quantities which 
arise in similar solutions to the equations, while 
others enabled general boundary-layer functions 
to be deduced from exact similar solutions. 
General functions are those which, subject to the 
assumptions discussed in Paper 1, apply to any 
boundary layer whether similar or non-similar. 

Some of these formulae which will be referred 
to in later sections are quoted below. but for 
detailed discussion the reader should consult 
Papers 1 and 2. 

Boundary-layer thicknesses are first defined 
in terms of the similar length co-ordinate 7 by: 

displacement thickness 

momentum thickness 

(34) 

The present author has found that a “similar” 
boundary-layer thickness can be denoted by an 
asterisk whichever similar co-ordinates are used 
[i.e. whether they are (f, 7) or (5, [) or any other]. 
This notation is brief and useful and does not in 
practice lead to confusion. This is partly because 
the groups, such as HX4, H,,, HZ4. A,, FZ or 
L’OVJ, which are finally required and. from 
experience, are the best groups with which 
to work, are independent of the similar co- 
ordinates used. 

The relationship between these “similar” 
bounda~-layer thicknesses and the correspond- 
ing physical thicknesses 6, and &, which are 
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defined in terms of the length :‘. is readily ob- 
tained from the appropriate “similar” 
transformation [e.g. equation (16)]. 

It is worth realizing that ,&“. being the wall 
shear in similar co-ordinates, can also be taken 
as the reciprocal of a “similar” shear thickness 
S:, although the more familiar symbol ,fn” will 
generally be used in the present work. 

If equation (18) is integrated throughout the 
boundary layer. the following relationship is 
obtained : 

--,fb” f !‘p:.fs” d? i /3(S: + ti;, =- 0 (36) 

where .f”’ = 0 in the main-stream and the 
definitions in equations (34) and (35) have been 
used. The second term in this can be integrated 
by parts to give: 

j: 17” d? >mm I$‘]; - j=f’2 d? 

--f(a) - $;,,I“’ dT (37) 

in which the boundary conditions in equation 
(19) have been used and s(m) represents the 
value of the stream function in the main-stream. 
But this quantity can be written as: 

,f’(cc) :=fb + jF1” d7. (38) 

On inserting equations (37) and (38) into equa- 
tion (36), and rearranging, one obtains: 

.f@” =fo + as: + (j3 ? 1) s;. (3% 

For ,L3 = 0, this equation gives the relationship 
between the quantitiesf,,,f,” and the momentum 
thickness c!$, but the displacement thickness 
does not occur, whereas for the case b = -1 it 
relates _&, .&” and ST, but the lnomentunl 
thickness Sq does not then appear. 

Using the definitions already given. the func- 
tions required in the present work are obtained 
from the following formulae: 

f$ =? I 

12 &* 
‘1 

(41) 

(42) 

When the functions occurring on the left-hand 
sides of these equations are evaluated for similar 

solutions (i.e. for given values of the parametel 
/$, the pressure-gradient parameter relating to 
the momentum thickness is obtained from: 

Th.e function I$, which measures the rate of 
growth of the momentum thickness, is then 
obtained from : 

The quantities occurring on the right-hand 
sides of equations (43) and (44) are evaluated 
from exact similar solutions, while the functions 
occurring on the left apply to any laminar 
boundary layer. 

4. ASYMPTOTIC BEHAVIOUR OF BOUNDARY- 
LAYER FUNCTIONS FOR LARGE MASS- 

TRANSFER RATES 

4.1 General Di~cuss~~~l 
In this section, an examination is made of the 

behaviour of boundary-layer functions for high 
rates of mass flow through the wall boundary. 
Pretsch [4] has obtained some asymptotic values 
of thickness ratios for these conditions; his 
results were quoted in Paper 2 but since that 
paper was written the need has arisen for 
greater detail and higher accuracy. 

For the well-known case of intensive suction, 
only sufficient detail will be given to show the 
form of the solution and the asymptotic values 
of the various functions. This case has been 
examined at Length by Watson [5] who expressed 
the functions as asymptotic series in inverse 
powers of Jo”; these series give high accuracy 
when .fo is large. Watson considered only the 
real domain in detail but his formulae can be 
applied to the imaginary domain merely by 
repla~ing~oz by -fez wherever it occurs. 

The case of intensive blowing will be discussed 
in greater detail. The asymptotic form of the 
differential equation is first derived, and from 
this are obtained the asymptotic value of the 
wall shear fo” and relationships connecting the 
as~ptot~c values of the thickness ratios HI*, 
HIZ and Hz4. The last of these ratios is then 
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expressed in terms of gamma-functions, and a 
table of values of all three is given at convenient 
intervals in the parameter 8. This table is more 
extensive and accurate than that given by 
Pretsch [4]. 

For ease of reference the formulae which hold 
for large mass-transfer rates are collected 
together in Appendix A. 

4.2 Intensive Suction 
Since the boundary layer becomes very thin 

for intensive inward mass flow, its behaviour 
may be examined by suitably extending the co- 
ordinates. Defining a new independent co- 
ordinate x1 and a new stream function pr by: 

Xl =foT 
and 

Ql = So(f - fo)* 

equation (18) is transformed to: 

d3q1 
dy3 +d$ +y; 

I 1 1 
v1;gy 

‘1-p [1 - @J2]) 

with boundary conditions : 

x1 = 0. Q1 = !!F! c= () 
dxl 

.= 

(45) 

(46) 

0 (47) 

(48) 

The asymptotic form of equation (47) for 
large values off0 is clearly: 

d3p’i d2g?, 
dx’-+dx=O (49) 

1 

the solution of which, satisfying the boundary 
conditions in equation (48) is : 

pl = (xl - 1 + e-xl). (50) 

From this, the distribution of velocity in the 
boundary layer is the well-known asymptotic 
suction profile : 

(511 

For this profile it may be shown that the boun- 
dary-layer functions have the following values : 

fo” =fo c52) 

(53) 

H,, = 2 (54) 

H,, = 4 (5% 

H,, = 1 (56) 

(571, 

(58) 

In solutions to equation (18), when the suction 
rate becomes very high the functions tend to 
these asymptotic values for all values of & in the 
real and the imaginary domains. 

4.3 Intensive Blowing when j3 is Not Infinite 
4.3 1 Trawforming the difSerentia1 equation 

It will have been noticed that the forms of the 
velocity equation in the real and the imaginary 
domains differ only in the sign of the first term. 
This, incidentally, means that a computer pro- 
gramme which has been prepared for obtaining 
solutions in the real domain requires only minor 
changes for use in the imaginary domain. To 
anticipate results to be given later, it will be 
found that for intensive blowing the first term in 
the differential equation becomes negligible, so 
that the equation assumes the same asymptotic 
form in the two domains. They can therefore be 
considered simultaneously, although the line 
separating the two domains, when the parameter 
13 is infinite. must still be treated as a special 
case. 

Since the first term in equation (18) becomes 
negligible, the resulting equation has the form 
obtained when the last term on the right-hand 
side of equation (1) vanishes. In other words, the 
case of intensive blowing behaves in some re- 
spects like that of negligibly small viscosity. 

It is known that the boundary-layer thickness 
increases with increasing outward mass transfer. 
For high blowing rates. therefore, the boundary 
layer wilt become very thick, a fact which would 
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tend to contravene one of the fundamental 
assumptions of the theory that the boundary 
layer is confined to a very thin region near the 
wall. This does not affect the present discussion 
because here, and throughout the present series 
of papers. the approximation is assumed to hold. 
On the other hand, if the results for intensive 
blowing are to be applied to a practical problem 
it would be a wise precaution. before doing so, 
to test the validity of the boundary-layer 
approximation. 

As the boundary layer is very thick its be- 
haviour may be examined by making a suitable 
contraction of the co-ordinates. Defining a new 
independent variable x and a 
function (1 by: 

new stream ’ 

x = _I_ 

f . 0 

and 

CT(x) =:‘ 
. n 

equation (18) becomes: 

which for large f0 reduces to : 

(59) 

(60) 

=o (61) 

0. (62) 

This is clearly the asymptotic form for large 
rates of outward mass transfer of both equation 
(IQ which holds in the real domain where /3 is 
positive in the range 0 < @ < X, and equation 
(221, which holds in the imaginary domain where 
,8 is negative in the range -UC < /I < -0.5, al- 
though it does not hold when /? is infinite. 

In terms of these new variables, the boundary 
conditions given in equation (19) are: 

These three boundary conditions are associated 
with the third-order differential equation (61). 

The general solution to the second-order squa- 
tion (62) can, however, fulfil only two of rhese 
conditions, say the first two. It will be necessary 
later to put a further restriction on these \c&- 
tions in order that they may behave like tlxw of 
equation (611, satisfying all three bourt&.ry 
conditions. 

4.32 The asynptotic mlrtr qf the wall S~ICWI~ .,, 
When equation (62) is evaluated at the wa!.I, it 

reduces to: 

:&I) 

where the suffix denotes the wall value. If thtj is 
transformed back to the (~,,f) co-ordinates using 
equations (59) and (60), it becomes: 

In this relationship it should be remembered 
that for the real domain /3 is positive and r;, is 
large and negative, whereas for the imaginary 
domain /3 is negative and ,f,, is large and positive, 
so that ,f,” is always positive. When numrrical 
solutions to equation (18) are examined it may 
be seen that equation (65) is a. good approxima- 
tion even for moderate blowing rates. For 
/3 = 1 in Table 2 (see section 6). for example, it 
holds to about 1 per cent when f. = ---3-O; 
for f0 = -4.3346, the most intensive bloGng 
rate for the same value of /3 considered by 
Schlichting and Bussman [6] (see also Paper 2, 
Table 3), it holds to within 0.3 per cent. 

Using equations (41) and (42) and thit CddCt 

that X, = /3(X)“, equation (65) may be written : 

In other words, when the thickness ratio Hz, is 
plotted as a function of the pressure-gradient 
parameter h,, with LP~~,/v as a parameter de- 
noting the mass-transfer rate, lines of constant 
c,S,/v are approximately linear, have the slope 
(v/v,~~) and pass through the origin. Reference 
to Fig. 4(a) of Paper 2 shows that the lines for 
(C&/V) equal to 2.0, 25 and 3.0 are gradually 
approaching this state, although the slopes of the 
lines have not quite reached their asymptotic 
values. 
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4.33 Relationships between thickness ratios 
Some relationships which exist between the 

asymptotic values of the thickness ratios H14, 
HI, and HZp will now be derived. On integrating 
equation (62) over the range 0 < x < cc, the 
following relationship is obtained : 

The first term in this can be integrated by parts 
to give: 

If, now, solutions to equation (62) are such as to 
satisfy the boundary condition (dpl/dx) --f 1 as 
x -+ co, and the value of p at large x is written as : 

P(a) = PO + J m dp, 
o dTdx, (69) 

substituting equation (69) into equation (68) and 
this in turn into equation (67) and using the 
facts that dx = dT/fo and v0 = 1 gives: 

where the boundary-layer thicknesses Sf and Sg 
have been defined in equations (34) and (35). It 
should be noted that equation (70) is the limiting 
value of equation (39) when fO” becomes very 
small. 

Since the wall gradient fi’ in equation (65) is 
the reciprocal of the shear thickness Bf, the 
quantity f0 occurring in equation (70) may be 
replaced by -/%z, so that, after rearranging, 
the equation finally reduces to: 

(71) 

where HI4 and Hz, are thickness ratios. 
Equation (71) holds for all values of ,t?, in the 

real domain, the imaginary domain, and even for 
infinite j3, although the latter case was excluded 
from the discussion at the canning of section 
4.3. Two alternative forms of equation (71) are : 

and 

4.34 Evaluating the thickness ratio Hz4 
If one of the three thickness ratios can be 

evaluated exactly, the others can then be ob- 
tained from the above formulae. A convenient 
ratio to calculate is H,, which will be expressed 
in terms of gamma-functions. 

If, for the moment, primes be used to denote 
differentiation with respect to x, with the 
substitution : 

equation (62) may be reduced to: 

(75) 

which is readily integrable. After a short calcu- 
lation, the velocity in the boundary layer may be 
expressed as : 

The relationship between p; and x will not be 
derived from this since it is not required here. 

As we are restricting solutions to equation 
(62) so that the velocity (dgj/dx) tends to unity at 
large distances from the wall, equation (76) 
must be interpreted differently in the real and the 
imaginary domains. 

The real domain: In this case fi is positive; 
therefore, in order that the velocity in the boun- 
dary layer may vary from zero at the wall to 
unity at the outer edge of the boundary layer, 
the function ‘p must decrease from unity at the 
wall to zero at the outer edge of the boundary 
layer. Because, as will be remembered, f. is 
large and negative, for asymptotic blowing 
the stream function f is negative throughout 
the boundary layer, becoming positive only at 
the point where the main-stream is reached. 
Solutions for j3 = 1, to be discussed in section 6, 
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show this clearly: in these the point at which the 
stream function changes sign gets closer to the 
main-stream as ,f;, becomes more negative. 

The ~~~ag~nar}, ~~~}~za~n: In this case the para- 
meter j3 is negative andf, positive; the function p 
must therefore vary between unity at the wall 
and a large positive value at the outer edge of the 
boundary layer. 

From the definition of x in equation (59) and 
the relationship given in equation (65) the 
asymptotic value of H*4 is: 

where the upper limit p( co) in the last expression 
is zero for the real domain and infinity for the 
imaginary domain. 

Substituting equation (76) into (77) gives: 

Irl,, = _ j’j j:‘“‘j,l _ (1 _ @?3)1’2). dy (78) 

which, on introduction of a symbol for c/2” and 
making a short calculation, gives finally for /IT, 
the expression : 

where r is the gamma-function. The second term 
on the right will be recognized as a “beta”- 
function but this symbol is not used in order to 
avoid confusion with B. 

Equations (71-73) and (79) have been used to 
obtain the asymptotic values of the thickness 
ratios H14, H,, and H24. The results are con- 
tained in Table 1, but the case of infinite /I will be 
considered before discussing this. 

4.4 The Case when F: is InJiniie 
Of the two cases of infinite /3 considered in 

section 2.3, only equation (27), but not equation 
(31), has an asymptote for intensive blowing. 
The transformation : 

--- 
0.0 
0.025 
0.05 
0.1 

(l/9) 
0.125 

(I,73 
(116) 
0.2 
0.25 
0.3 

(1!3) 
0.4 
0.5 
0.6 
0.8 
1.0 
1.2 
1.4 
I.6 
2.0 
3 
-r 

3 
10 
20 

=x 
-20 
-10 
-_ 7 
-5 
-4 
-3 
- 2.0 
__ 1.6 

-- 1-1 
- 1.2 
- 1.0 
-- 0.8 
- 0.7 
.- 0.6 
- 0.55 
-- 0.51 
-- 0.50 

0.0 % 
0.174409 X.66138 
0.233775 640710 
0.306349 4.85812 
0.318404 4.67144 
0.332143 4.47594 
0.348017 4~27025 
0.366667 4.05263 
0.389049 3.82075 
0.416667 3.57143 
0.439174 3.39336 
0.452065 3,30013 
0.474019 3.15424 
O~%OOOO 3aooOO 
0.520251 2.89180 
0.549954 2.74949 
0.570796 2-65979 
0.586830 2.60390 
0.598249 2.55275 
0607790 2.51818 
0.622058 2.46886 
0.642976 2.40124 
0.654370 Z3665Y 
0.661544 2.34551 
0.670087 2.32126 
0.676726 2.30268 
0.684772 2.28092 
0.693147 2.25889 
0.701862 2.23644 
0.710987 t.tt404 
0.739129 7.19459 
0.730480 2.16824 
0.740924 2-14490 
0,759497 2.10531 
0~801860 2.02347 
0.839367 I.95953 
0~870017 1.91238 
0,917336 1.84953 
1.~ 1.75194 
1.18558 1.59712 
I.40913 I.47609 
2.05719 I.29727 
3.32390 1~1702.5 
13.3414 1~03863 

I i-o 

0.0 
0.0201364 
0.0364870 
0.0630592 
0.0681596 
0.0742063 
0.0814979 
0.09~762 
0.101825 
O.Il6667 
0~129421 
0,136984 
0*150280 
O-166667 
0.179906 
0.2~21 
0~214602 
0.225366 
0.234355 
0.241360 
o-251962 
0.267768 
0.27650-t 
0.282047 
0.288674 
0.293886 
0.300218 
0.306853 
0.313829 
0~32il26 
Cf.327683 
0~336900 
0.345435 
0.360754 
0.396280 
0.428355 
OG55940 
0.19598-t 
0.57079h 
0.732323 
0.954636 
1.58579 
2.84032 
I2.845l 

tf 
c/;! = - 

k,, 
(81) 

is introduced into equation (27). the negative 
signs being used in order that xZ and ran may be 
positive, li, being, of course, a negative qualltit~. 
Equation (27) then becomes : 
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1 d3ys d2tpz _-_ __ - --. 
k,Z dx; dx,2 

For very large ko, this is, after a change of 
sign, 

-__1$- drp, d2giz 
c i 

2 

dx: dxz 
= 0. (83) 

The boundary conditions given in equation (28) 
are : 

x2 = 0, p2 = dg Z (j 

(84) 

‘X2-f co, da72 -- -+ 1. 
dxz 

The solution to equation (83) is 

p)$ = In (cash xz) (85) 

which, though a solution to a second-order 
equation, is seen to satisfy all three boundary 
conditions in equation (84). 

From this solution, the second gradient of 9z 
at the wall is: 

which, in terms of the function 0, is: 

Since the velocity distribution has the form : 

d92 - = tanh ,Q, 
dxz 

(86) 

(87) 

by means of equation (87) the thickness ratio 
& becomes: 

H2* = (1 - In 2) = 0.306853. (89) 

Equations (71) and (72), which also hold for 
infinite j3, are used to obtain the other ratios: 

HI4 = In 2 = 0.693147 (90) 
and 

HI, = i_ln--;& = 2.25889. (91) - 

4.5 Disc~s~on of Table 1 
Table I contains the asymptotic values of 

the thickness ratios at convenient intervals in 
the parameter /3. Some values of j3 are given as the 

s 

reciprocal of an integer in order to specify them 
accurately but briefly. Most of the positive 
values of j? included in the table are those 
occurring in earlier papers of the present series. 
The values additional to these were chosen either 
because the gamma-functions occurring in the 
formula for Hz, in equation (79) are particularly 
easy to evaluate, which is the case when @ is the 
reciprocal of an integer, or in order to obtain 
well-spaced values in the final thickness ratios. 
The ratios may be readily calculated for values 
of j3 not included in Table 1, from formulae 
already given, if comprehensive tables of gamma- 
functions are available. 

Table 1 contains more values of /I, and the 
thickness ratios are more accurate than the 
results given by Pretsch [4] which were contained 
in Table 4 of Paper 2. While there is good overall 
agreement with Pretsch’s results, some individual 
values differ greatly from his. 

In the present calculations, at least seven, 
usually eight, significant digits were used, with 
the aim of obtaining the final values accurate in 
the sixth digit. While most of the values in the 
table are believed to be as accurate as this, a 
few may contain an error of up to three units in 
the last digit quoted. This arises partly from the 
form of the relationships used to obtain the 
thickness ratios and partly from the methods 
used in the calculations, since many gamma- 
functions were evaluated from asymptotic 
formulae. 

Examination of equation (79) shows that, 
when /? = - l/p where p is an integer equal to or 
greater than 2, the ratio Hg4 does not exist; 
when p is odd, the gamma-function in the 
denominator does not exist, and when p is 
even that in the numerator does not exist. An 
interpretation of this is that the velocity equation 
does not possess solutions for intensive blowing 
when the parameter /3 is equal to or lies beyond 
the point p = -0.5. Mangler [7] also found that 
the equation has no solutions in the imaginary 
domain beyond this limiting value of 8. 

5. OBTAINING NUMRRICAL SOLUTIONS ON A 
COMPUTER 

A number of numerical solutions to equation 
(18) obtained on a computer will be given in 
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later sections. For numerical integration, the 
usual Runge-Kutta process was used. This 
process is well known, and most computers 
possess a standard programme for it. However, 
for purposes of reference both in the present 
paper and in later publications, and in order to 
supply the numerical coefficients employed, a 
brief description of the process is given in 
Appendix B. 

In order to integrate throughout the boundary 
layer, accurate values of the wall shear fO” for 
specified values of the parameters /3 and f,, 
were required. Where these were not known 
accurately, a number of trial runs was made 
to obtain them. The criterion employed for this 
was that the velocityf’ should tend to unity as 
7 became large and remain at that value. 

When this happened. the stream function 
became a linear function of 7 for large 7, and 
f" became very small. For accurate solutions, 
the functions arrived at their final values in the 
following order as 7 increased: first the stream 
function became proportional to 7, a few inter- 
vals later f' became unity and then after a few 
more intervals f ” became negligibly small. 

When the starting value,f,,” was too small, the 
function f ‘ increased to a maximum value, 
which was less than unity, and then. as f" 
became negative, it began to decrease. 

When fo" was too large, the function f' in- 
creased to values greater than unity as 7 
increased. 

For many values of /3, particularly for nega- 
tive values off0 in the real domain, the starting 
value fo" was required to extremely high accuracy 
in order to obtain a satisfactory solution. 

6. THE FORWARD STAGNATION POINT FOR 
TWO-DIMENSIONAL FLOW; /3 : 1 

The case when /3 = 1 in equation (18) cor- 
responds to the forward stagnation point when 
the flow is two-dimensional. Some solutions for 
this case taken from the literature were quoted 
in Paper 2. Since these were in many respects 
inadequate for the present work. a new set of 
solutions was obtained. 

The solutions are summarized in Table 2 and 
the distribution of the stream function and its 
first two derivatives are given in Table 2(a-m). 
The third derivative off is not tabulated as it 
may be obtained by substituting .jY f’ and f I' 
into equation (18). 

Preliminary values of fo” to four significant 
digits, from which more accurate values were 
obtained by successive approximation, were 
taken from Table 5 of Paper 2. The value for the 
case,fO = 0 was already known to high accuracy 
from work done by Smith [8] (see also Paper 7 
of the present series). 

Since the present solutions were obtained, very 
accurate values of ,fo” as well as tables of the 
velocity distribution to four decimal places, 
have been found in a publication by Terrill [9]. 

Table 2. Solutions to the ve1ocif.v equation for fl = 1.0, -3.0 < f. < 3.0 
B-z-7-F ~~~ ~~~ 

f" f”” 6* 1 8* 2 
Z!“b, 

1’ HI, HZ, 
s; d&y; 

Y dx 

Solutions 
in 

Table 
-_ 

3.0 3.526640 0.26710 0.12977 -0.38931 2.0583 0.45765 0.016840 
2.5 3.091124 0.30072 0.14520 -0.36300 2.071 I 0.44883 0.021083 
2.0 2.670056 0.34219 0.16393 -0.32786 2.0874 0.43770 0.026873 
1.5 2.267646 0.39399 0.18683 ~ 0.28024 2.1088 0.42366 0.034905 
1.0 1.889314 0.45932 0.21500 -0.21500 2.1364 040620 0.046225 
0.5 1.541751 0.54233 0.2497 I -0.12486 2.1718 0.38499 0.062355 
0.0 1.2325877 0.64789 0.29235 0.0 2.2161 0.36035 0.085469 

-0.5 0.9692296 0.78095 0.34414 0.17207 2.2693 0.33355 0.11843 
-1.0 0.75657486 0.94498 0.40580 040580 2.3287 0.30702 0.16467 
-1.5 0.59428178 1.13995 0.47717 0.71575 2.3890 0.28357 0.22769 
-2.0 0.4758098 1.36166 0.55708 1.11416 24443 0.26506 0.31034 
-2.5 0.390889090 160320 0.64384 1.60961 2.4900 0.25167 0.41454 
-3.0 0.3294530885 1.85839 0.73553 2.20659 2.5266 0.24232 0.54100 

Note that the solutions in the last three lines are less accurate than the others. 
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Table 2(a). Solution for ,¶ = 1, f, = 3.0 

? f f f” 
--_- 

0.0 3mOOO O@OOOO 3526640 
0.2 3.05718 0514425 1.79541 
0.4 3.18887 0.772133 0.881480 
0.6 3.35728 0.896671 0.417484 
0.8 3.54317 0.954734 0.190737 
1.0 3.73708 0.980849 0.840470(- 1) 
1.2 3.93454 0.992177 0.357115(-l) 
1.4 4.13352 0.996916 0.146284(- 1) 
1.6 4.33313 0.998827 0.577555(-2) 
1.8 4.53298 0.999570 0.219743(-2) 
2.0 4.73292 0.999848 0.805540(- 3) 
2.2 4.93291 0.999948 0.284489(- 3) 
2.4 5.13290 0.999983 0.967980(-4) 
2.6 5.33290 0.999995 0.317479(-4) 
2.8 5.53290 0.999999 0.100587(-4) 
3.0 5.73290 1QOOOO 0.310279(-5) 
3.2 5.93290 1XlOOOO 0.958150(-6) 
3.4 6.13290 1WJOO 0.324257(-6) 
3.6 6.33290 1%lOOO 0.145384(-6) 
3.8 6.53290 l.OOOOO 0.980222(-7) 
4.0 6.73290 1@lOOO 0.871071(-7) 

__ 

Table 2(c). Solution for j3 = 1, fO = 2.0 

? f f f” 
-_-- 

0.0 2wOOO OX@OOOO 2.670056 
0.2 2.04575 0.422915 1.63175 
0.4 2.15799 0.677311 0.963435 
0.6 2.30962 0.825203 0.549794 
0.8 2.48379 0.908309 0.30323 1 
1.0 2.67043 0.953445 0.161600 
1.2 2.86375 0.977130 0.831884(-l) 
1.4 3.0605 1 0.989135 0.413511(-l) 
1.6 3.25900 0.995011 0.198410(- 1) 
1.8 3.45831 0.997786 0.918651(-2) 
2.0 3.65801 0.999051 0.410318(-2) 
2.2 3.85789 0.999608 0.176751(-2) 
2.4 4.05784 0.999843 0.734154(-3) 
2.6 4.25782 0.999940 0.294009( - 3) 
2.8 4.45781 0.999978 0.113549(-3) 
3.0 4.65781 0.999992 0.423377(-4) 
3.2 4.85780 0.999998 0.152979(-4) 
3.4 5.05780 l.OOOOO 0.542132(-5) 
3.6 5.25780 1WOOO 0.195396(-5) 
3.8 5.45780 1WOOO 0.786455(-6) 
4.0 5.65780 l.OOOOO 0.411864-6) 
4.2 5.85780 1+lOOOO 0.300658(--6) 
4.4 6.05780 l.OOOOO 0.272665(-6) 
4.6 6.25781 l.OOOOO 0.270881(-6) 

Table 2(b). Solution for p = 1, fO = 2.5 

? f f f” 

0.0 2.50000 04OOOOO 3.091124 
0.2 2.55153 0.469921 1.72599 
0.4 2.67397 0.728135 0.930133 
0.6 2.83478 0.865115 0.483942 
0.8 3.01562 0.935279 0.243092 
1.0 3.20656 0.969979 0.117866 
1.2 340242 0.986542 0.551488(- 1) 
1.4 360059 0.994172 0.248936(- 1) 
1.6 3.79981 0.997563 0.108374(- 1) 
1.8 3.99949 0.999016 0.454921(-2) 
2.0 4.19936 0.999617 0.184083(-2) 
2.2 4.39931 0.999856 0.717886(-3) 
2.4 4.59929 0.999948 0.269740( - 3) 
2.6 4.79928 0.999982 0.976150(-4) 
2.8 4.99928 0.999994 0.339953(-4) 
3.0 5.19928 0.999998 0.113677(-4) 
3.2 5.39928 0.999999 0.362339(- 5) 
3.4 5.59928 1XU)OOO 0.107217(-5) 
3.6 5.79928 1WOOO 0.262234( - 6) 
3.8 5.99928 1WOOO 0.135466(-7) 

Table 2(d). Solution for p = 1, fO = 1.5 

11 f f f” 

0.0 1.50000 OGOOOOO 
0.2 1.53991 0.373957 
0.4 164105 0.619538 
0.6 1.78178 0.775619 
0.8 1.94731 0.871640 
1.0 2.12786 0.928811 
1.2 2.31723 0.961745 
1.4 2.51160 0.980092 
1.6 2.70871 0.989972 
1.8 290727 0.995113 
2.0 3.10658 0.997697 
2.2 3.30626 0.998951 
2.4 3.50612 0.999538 
2.6 3.70606 0.999804 
2.8 390603 0.999919 
3.0 4.10602 0.999968 
3.2 4.30602 0.999988 
3.4 4.50602 0.999995 
3.6 4.70601 0.999998 
3.8 490601 0.999999 
4.0 5.10601 10JWO 
4.2 5.30601 l.OOOOO 
4.4 5.50601 10lOOO 
4.6 5.70601 10XOO 

2.267646 
1.51237 
0.975828 
0609408 
0.368339 
0.215413 
0.121845 
0.666300( - 1) 
0.352099(- 1) 
0.179725(-l) 
0.885797(-2) 
0.421388(-2) 
0.193423(-2) 
0.856402(--3) 
0.365653(- 3) 
0.150508(-3) 
0.597050(-4) 
0.228152(-4) 
0.839049(-5) 
0.296208( - 5) 
0.995909( - 6) 
0.310290-6) 
0,79757q-7) 
0.481469(-8) 
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Table 2(e). Solufion jk p = 1, fb = I .O 

; 

1) f f' f" 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 3.94068 
3.6 4.14068 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 

1aoooO 
1.03413 
1.12341 
1.25151 
140611 
1.57826 
1.76165 
1.95205 
2.14666 
2.34373 
2.54219 
2.74140 
2.94102 
3.14083 
3.34075 
3.5407 1 
3.74069 

4.34068 
4.54068 
4.74068 
4.94068 
5.14068 
5.34068 
5.54068 

OGOOOOO 
0.323946 
0.555305 
0.715513 
0.823095 
0.893138 
0.937336 
0.964352 
0.980339 
0.989494 
0.994563 
0.997278 
0.998681 
0.999383 
0.999721 
0.999878 
0.999949 
0.999980 
0.999993 
0.999998 
1WIOO 
1tlOOOO 
1mOOO 
1XMIOOO 
1aOOOO 
1aOOOO 

1.889314 
1.36946 
0.962117 
0.655438 
0.432947 
0.277202 
0.171953 
0.103286 
0600409(- 1) 
0.337597(-l) 
0.183516(-l) 
0.963979( - 2) 
0.489100(-2) 
0,239609( -2) 
0~113307(-2) 
0.517109(-3) 
0.227789( - 3) 
0.969301( -4) 
0.399512(-4) 
0.160755(-4) 
0645408( - 5) 
0.273056(- 5) 
0.135405(-5) 
0.874707( - 6) 
0.725260( - 6) 
0.692308( - 6) 

These include most, but not all, of the values of 
f, covered here, and in additionf, = 4, 5 and 10. 

The numbers in the present tables are copies, 
after trivial changes were made in nomenclature, 
of the outputs given by the computer. Some 
values of f” are given as a six-digit number 
multiplied by a large negative power of 10. The 
computer worked to fairly high accuracy, the 
ninth or tenth significant digit being correct, 
but even so it is very unlikely that the last 
significant digits in these very small values of 
J”’ are correct. As it was not possible to estimate 
at which digit these values became inaccurate, 
the values given by the computer are given in the 
tables without change. 

It is a common experience when equation (18) 
is solved numericaIly that solutions are consider- 
ably more difficult to obtain when mass transfer 
is outwards than when mass transfer is either 
absent or directed inwards. A way in which the 
difficulty manifests itself is that the wall gradient 

f,” for any given value off0 is required to very 
high accuracy, in order that the velocity f' may 
tend to unity for large 7. This requirement 
becomes more severe as f0 increases in 
magnitude. 

The solutions for f. = -2.0, -2.5 and -3.0 
in Table 2(k), (1) and (m), respectively, show 
this clearly, where, although fo" was known to 
very high accuracy (an increase of one unit in 
the last digit quoted made the value too large), 
the velocity f' still did not quite become unity 
before f" became negative. This difficulty has 
also been discussed by Eckert et al. [lo]. 

Fortunately, these solutions are still useful, 
since it has been found that the error is quite 
small when they are used to evaluate such quan- 
tities as boundary-layer thicknesses in the 
velocity layer or the Nusselt number when 
calculating rates of heat transfer. 

Table 2(f). Solurion for p = 1, f. = 0.5; 

‘I .t f' f" 

0.0 0.5OOOOO 
0.2 0.528538 
0.4 0.605527 
0.6 0.719436 
0.8 0.860694 
1.0 1.02164 
l-2 1.19637 
1.4 I .38046 
1.6 1.57072 
1.8 1.76494 
2.0 1.96160 
2.2 2.15973 
2.4 2.35872 
2.6 2.55819 
2.8 2.75791 
3.0 2.95778 
3.2 3.15772 
3.4 3.35769 
3.6 3.55768 
3.8 3.75767 
4.0 3.95767 
4.2 4.15767 
4.4 4.35767 
4.6 4.55767 
4.8 4.75767 
5.0 4.95767 
5.2 5.15767 
5.4 5.35767 
5.6 5.55767 

03OOOOO 
0.274226 
0.486047 
0645075 
0.761134 
0.843451 
0.900164 
0.938095 
0.962707 
0.978190 
0.987626 
0.993194 
0.996373 
0.998128 
0.999065 
0.999548 
0.999789 
0.999905 
0.999958 
0.999983 
0.999993 
0.999997 
0.999999 
1aOOoO 
1aOOOO 
1CKMO 
1WOOO 
10X@O 
1GOOOO 

1.541751 
I .20746 
0.918856 
0.679676 
0.488648 
0.341318 
0.231498 
0.152361 
0.972393( - 1) 
0601385( - 1) 
0.360181(-l) 
0.208774( ~ 1) 
0.117051( - 11 
0.634426( - 2j 
0.33227q - 2) 
0.168079(-2) 
0.820879( - 31 
0.386927(-3) 
0.175963(-3) 
0.771833(-4) 
0.326443(--4) 
0.133087(-4) 
0.522784( - 5) 
0.197706( - 5) 
0.718337(-6) 
0.249244( - 6) 
0.809878( - 7) 
0.228445( -7) 
0.345096( - 8) 
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7. SOLUTIONS FOR fi = -1 

When /I = - 1 in equation (18), a simple 
relationship was found between the wall shear 
fo” and the mass-transfer parameter fo. This 
means that, in a computer programme for 
solving the equation numerically, the starting 
values f. and fo” can be specified exactly without 
the need for successive approximation. 

The exceptional behaviour of the case 
j3 = - 1 was first observed by Thwaites [I l-l 31 
who integrated the differential equation in 
terms of error functions. This work was brought 
to the notice of the author only after preparation 
of the present paper. It should be possible to 
draw up a more accurate and complete set of 
functions from an exact solution of this nature 
than was possible by the numerical methods 
employed here. 

Table 2(g). Solution for ,4 = 1, fu = 0 

7) f f f 

0.0 
0.2 
0.4 

8:; 

1.0 
1.2 
1.4 
16 
1.8 
2.0 
2.2 
2.4 
2.6 
2-8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4-4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 

O+MOOOOO 
0.0233223 
0.0880566 
0.186701 
0.312423 
0.459227 
0.622028 
0.796652 
0.979780 
1.16886 
1.36197 
1.55776 
1.75525 
1.95381 
2.15300 
2.35256 
2.55233 
2.75221 
2.95215 
3.15212 
3.35211 
3.55211 
3.75210 
3.95210 
4.15210 
4.35210 
4.55210 
4.75210 
4.95210 
5.15210 

OGOOOOO 
0.226612 
0.414456 
0.566281 
0.685938 
0.777865 
0.84667 1 
0.896809 
0.932348 
0.956834 
0.973217 
0.983854 
0.990550 
0.994634 
0.997~6 
0.998425 
0.999187 
0.999594 
0.999804 
0.999909 
0.999960 
0.999983 
0999994 
0.999998 
1WOOO 
l.OOOOO 
1X)OOOO 
1+IOOcQ 
1@0000 
~.~ 

1.2325877 
1.03445 
0.846326 
0.675172 
0.525132 
0.398013 
0.293776 
0.211003 
0.147352 
0.999641(- 1) 
0.658257( - 1) 
0.420400( - 1) 
0260207( - 1) 
0.155977(-l) 
0,904929(- 2) 
0+07841(-2) 
0.275536(-2) 
0~144470(-2) 
0.731783(-3) 
0.358039(- 3) 
0,169252(-3) 
0*7739~-4) 
0.343594(-4) 
0.149530(-4) 
0.653871(-5) 
0.303872(- 5) 
0~165020(-5) 
0.113338(-5) 
0.962240(- 6) 
O-922646( - 6) 

Table 2(h). Solution for fl = 1, f. = -0.5 

.- 

‘I f f f” 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2,2 
2.4 
2.6 
2.8 
3.0 
3.2 

::; 

3.8 

;:p 

4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 

-0cxloooo 0.~ 0.9692296 
-0.481318 O-183247 0.862040 
-0.428168 O-344526 0*750471 
-0.344997 0.483482 0.639574 
-0.236228 0600675 0.533436 
-0~106094 0.697385 0.435188 

0.0414808 0.775424 0.347020 
0.202975 0.836953 0270234 
0.375317 0.8843 10 0.205312 
0.55591 I 0.919856 0.152035 
0.742623 0.945849 0.109619 
0.933752 0.964349 0.768798( - 1) 
1.12798 0.977152 0.523963( - 1) 
1.32433 0.985758 0.346704( - 1) 
I .52209 0.991373 0.222545( - 1) 
1.72075 0.994927 0,138465(-l) 
1.91997 0.997105 0.834479( - 2) 
2.11953 0.998399 0.486823(-2) 
2.31929 0.999142 0.274771(-2) 
2.51917 0.999556 0.149980(-2) 
2.71910 0.999778 0.791528(-3) 
2.91907 0.999894 0,403972( - 3) 
3.11905 0.999952 0.199597( - 3) 
3.31905 0.~9980 0,957723( -4) 
3.51905 0.999994 0449898( -4) 
3.71904 1XK@OO 0.210984(-4) 
3.91905 1WOOO 0.103092(-4) 
4.11905 l%IOOO 0.565512(-5) 
4.31905 lmOO1 0.376215(-5) 

7.1 The Real Domain 
For ,!I = - 1, equation (18) has the form: 

j-“’ +a” - 1 + f ‘2 = 0 (92) 

On combination of the second and last terms on 
the left-hand side, two integrations and insertion 
of the boundary conditions at the wall given in 
equation (19) this reduces to: 

2;$-f2=f*‘+?J,“? +q2 (93) 

with the remaining boundary condition: 

df 
~ -+ 1 exponentially as 7 + co. 
drl 

(94) 

In the definition of the displacement thickness 
ST in equation (34), the contribution of large 
values of 17 to the integral is very small. It is 
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Table 2(i). Solution for fl = 1, fO = -1.0 

0.0 -1GOOOOO ONlOOOO 
0.2 -0.985208 0.146144 
0.4 - 0.942302 0.280906 
0.6 -0.873684 0403109 
0.8 -0.781943 0.512058 
1.0 -0.669762 0607514 
1.2 -0.539827 0.689649 
1.4 -0.394755 0.758999 
1.6 - 0.237024 0.816403 
1.8 -0.0689186 0.862936 
2.0 0.107508 0.899834 
2.2 0.290461 0.928422 
2.4 0.478412 0.950039 
2.6 0.670098 0.965973 
2.8 0.864502 0.977411 
3.0 1.06083 0.985397 
3.2 1.25849 0.990815 
3.4 1.45704 0.994385 
3.6 1.65616 0.996666 
3.8 1.85564 0.998079 
4.0 2.05535 0.998927 
4.2 2.25519 0.999419 
4.4 2.45511 0.999695 
4.6 2.65506 0.999846 
4.8 2.85504 0.999925 
5.0 3.05503 0.999965 
5.2 3.25502 0.999984 
5.4 3.45502 0.999994 
5.6 3.65502 0.999998 
5.8 3.85502 l.OGOOO 
6.0 4.05502 10XKKI 
6.2 4.25502 1WOOO 
6.4 4.45502 1GXKW 
6.6 4.65502 1aoOOO 
6.8 4.85502 1TlOOOO 
7.0 5.05502 1WOOO 

0.75657486 
0.703457 
0643189 
0.578262 
0.511033 
0443673 
0.378130 
0.316076 
0.258865 
0.207496 
0.162594 
0.124408 
0.928400-l) 
0.674959(- 1) 
0,477530(- 1) 
0.328442( - 1) 
0.219398(-l) 
0.142212(- 1) 
0.893741(-2) 
0.544174(-2) 
0.320791(-2) 
0.182981(-2) 
0.100941(-2) 
0.538329( - 3) 
0.277501(-3) 
0.138302(-3) 
0.667200( -4) 
0,312651(-4) 
0.143598(-4) 
0.660797( - 5) 
0.319709(-55) 
0.176529(-5) 
0.120036(-5) 
0~100016(-5) 
0.947571(-6) 
0.951021(-6) 

therefore possible to specify 8; to any required 
accuracy by replacing the upper limit by 
some large value Q of 7 beyond which the contri- 
bution to the integral is negligible. When this is 
done and the integration is carried out, the fol- 
lowing result ensues : 

s;=S:‘(l-~~)d?=~,--J(ril)+fo- (95) 

At sufficiently large distances from the wall, 
therefore, the stream function may be written 
accurately as : 

0.0 - 1.5OOoO 
0.2 - 1.48827 
0.4 - 1.45378 
0.6 - 1.39775 
0.8 - 1.32157 
1.0 - 1.22679 
1.2 - 1.11508 
I.4 -0.988142 
1.6 -0.847736 
I.8 -0.695587 
2.0 -0.533376 
2.2 - 0.362692 
2.4 -0.185010 
2.6 -OX)0166414 
2.8 0.186169 
3.0 0.377476 
3.2 0.571408 
3.4 0.767276 
3.6 0.964532 
3.8 1.16276 
4.0 I.36164 
4.2 I .56096 
4.4 1.76055 
4.6 1.96032 
4.8 2.16019 
5.0 2.36012 
5.2 2.56008 
5.4 2.76006 
5.6 2.96005 
5.8 3.16005 
6.0 3.36005 
6-2 3.56005 
6.4 3.76005 
6.6 3.96005 
6.8 4.16005 
7.0 4.36005 
7.2 4.56005 

OGOQOOO 0.59428178 
0.116475 0.569456 
0.227408 0.539018 
0.331771 0.503909 
0.428726 0.465114 
0.517638 0.423644 
0.598074 0.380526 
0.669807 0.336787 
0.732814 0.293427 
0.787267 0.251397 
0.833519 0.211561 
0.872087 0.174659 
0.903618 0.141281 
0.928861 0.111827 
0.948625 0,865024( - 1) 
0.963738 0.653100(- 1) 
0.975013 0.480700( - 1) 
0.983208 0,344516(-l) 
0.989006 0.240166(- 1) 
0.992994 0.162681(-l) 
0.995658 0,106975(- 1) 
0.997386 0,682286( -2) 
0.998472 0.421747( -- 2) 
0.999133 0.252479( -2) 
0.999524 0,146288(-2) 
0.999746 0,819877(-3) 
0.999869 0444252( - 3) 
0.999935 0.232634( - 3) 
0.999969 0.117696(-3) 
0.999986 O-575298(-4) 
0.999994 0.271849( - 4) 
0.999997 0.124439( - 4) 
0.999999 0,554944( - 5) 
1.00000 0.244687( - 5) 
1~00000 o~llo574(-5) 
1aoOOO 0.550794( --~ 6) 
1~00000 0.332961(-~6) 

Substituting this and the boundary condition 
(94) into equation (93) then gives: 

ST2 - 2f,6T + 2 + 2(f, - 8: -f,“) 71 = 0. (97) 

Since this holds for any large value of Q, both the 
coefficient of Q and the group of terms which 
are not multiplied by Q must be identically zero. 
The following relationships therefore hold : 
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and 

s: = j@ f (fag - 2)1’2, (991 

Equation (98) is clearly equation (39) for the 
present value of /A 

FROM these equations the wall ~ad~ent~~~ is 
then related to the parameter _& by: 

j; I- (Q - 2)1/t (1W 

the positive sign in equation (99) having been 
used for obvious reasons. 

Using this re~tions~~, exact corresponding 
values of fO and J,” were used in obtaining 

Table 2(k). Solution for /3 = 1, f0 = -2.0 

--. ve.-p_p-p_ = 

f f f” 
-_ 

7 
-- 

;:; 

0.4 

g:; 
I.0 
1.2 
l-4 
1.6 

:::: 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 

::; 
3.8 
4.0 
42 
4.4 
4.6 
4.8 
5.0 
5.2 
54 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 

-2aOotKl 
- I.99056 
- 1.96255 
- 1.91660 
- 1.85342 
- I.77389 
- 1.67895 
- 1.56964 
- 144708 
- 1.31243 
-1*16689 
-1~01164 
-0.847890 
-0.676791. 
- 0.499446 
-0.316888 
-0~130061 

Oa6019l3 
0.253131 
0448133 
O&l4675 
0.842345 
l+lO81 
1.23983 
1.43922 
163885 
1.83863 
2.03851 
2.23844 
2.43840 
2.63838 
2.83836 
3.03835 
3.23835 
3.43834 

0.~ 0.4758098 
0.09~78 0.464244 
0.185459 0449089 
0*2’73485 0.430655 
0.357525 o-409283 
0.437028 O-385345 
O~S11519 0.359245 
0~580610 0.331418 
0644002 0.302332 
0.701493 0.272483 
0.752980 0.242392 
0.798469 @212592 
0.838072 0.183616 
0.872004 0.155977 
0900583 0.130145 
0~924209 0.106516 
0.943357 0.853946(- 1) 
0.958547 O-669703(- 1) 
0.970329 0513086(--1) 
0.97925 1 0.383525(-I) 
0.985840 0,2793X(- I) 
0.990578 0.198050(-l) 
0.993893 0.136511(- 1) 
0.996148 O-913861(-2) 
0.997636 0+593577(--2) 
0.998589 0‘373695(- 2) 
0.999180 0.2277816~- 2) 
0.999535 0.134236{--2) 
o-999741 0.76322~(-3~ 
0.999856 0.417069( - 3) 
0.999917 0.217330(-3) 
0.999948 0.~0~14(-3} 
0.999963 0~460190(--4) 
0.999969 0.146521(-4) 
0.999970 -0~136784(--5) 

0.0 -2*5OoOO 
0.2 -249222 
0.4 - 246903 
0.6 - 2.43076 
0.8 -2.37780 
I.0 -2.31063 
1.2 - 2.22919 
1.4 -2~13591 
1.6 - 2-02966 
1.8 -1.91177 
2.0 - I.78303 
2.2 - 1.64425 
24 - I.49628 
2.6 -l-33998 
2.8 - I,17622 
3.0 - lW586 
3.2 - 0.829742 
3.4 -0.648687 
3-6 -0.463458 
3.8 --0.274X5 
4.0 -0‘0832534 
4.2 0*110504 
4-4 0306013 
4.6 0.502854 
4.8 0.7~86 
5.0 O-899235 
5.2 I.09829 
5.4 1.29769 
5.6 1.49732 
5.8 1.69709 
6.0 1.89696 
6.2 209689 
6.4 2.29685 
6.6 2.49683 
6.8 2~69681 
7,O 2.89681 
7.2 3.09680 
7.4 3.29680 
7.6 3.49680 
7.8 3.69680 
8.0 3-89679 

~~ 0.3~8890~ 
0‘077647 1 0.385209 
0.153938 o-377343 
0.228445 O-367393 
0.300764 0.355477 
0.370514 0.341724 
0.437341 0.326278 
0~500923 0.3~2~ 
0.5~970 0.290962 
Ofi O-271 463 
0669492 0.251017 
0.717589 0.229863 
a761407 0.208263 
0800884 0.186507 
0.836020 0.164901 
0,86&876 0.143772 
0.893582 0~ 123445 
0.916329 0~104241 
0.935372 0.864469( - 1) 
0.951018 0.703060( - 1) 
0.963617 O-559950(- I) 
0.973545 0.436128(- 1) 
0.981192 0.331742(- 1) 
0.9869~ 0.246119(--l) 
09QI153 0.177876(--l) 
O-9941 58 0-125088(--x) 
0996244 0.855007(-2) 
099765 t 0.567473(-2) 
0998571 0.365362(-2) 
0.999155 0.227980( - 2) 
0999514 0,137733(-2) 
C&999728 O-804720(- 3) 
099985 i 0.453943( -3) 
0.999919 0,246544( -- 3) 
0.999955 @128205(--3) 
0‘999974 0‘630293(-4) 
0.999983 0.283528(-4) 
0.999986 0~104921(-4) 
0.999987 0,154128(-5) 
0.999987 -O-287245(-5) 
0.999986 -0.506583( - 5) 

numerical solutions to equation (18) on a com- 
puter. These sohttions are summarized in 
Table 3 and the d~s~ibut~o~s with q of the 
stream function f and its &st two derivatives 
are given in Table 3(a-h). The magnitudes off, 
were chosen so as to give well-spaced values for 
the mass-transfer parameter (#*~~~~) between 
-0-58559, its value at the separation point, and 

-. _-.~~_1____ .._. l__^ -------_-~~ -05, the value when f. is infinite, 
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Table 2(m). Solution for /3 = 1, f, = -3.0 

9 f 
---- 

f’ 1“’ 

0.0 -3wOOO 
0.2 -2.99343 
0.4 -2.97381 
0.6 -2.94130 
0.8 -2.89615 
1.0 - 2.83863 
1.2 -2.76907 
1.4 -2.68784 
1.6 - 2.59537 
1.8 -2.4921 I 
2.0 -2.37857 
2.2 --2.25528 
2.4 --2.12281 
2.6 - I.98176 
2.8 - 1.83274 
3.0 - I.67639 
3.2 - 1.51337 
3.4 -- I.34431 
3.6 -1.16989 
3.8 - 0.990728 
4.0 -0.807461 
4.2 - 0.620679 
4.4 ~ 0.430942 
4.6 -0.238765 
4.8 - 0.0446 I24 
5.0 0~151107 
5.2 0.348041 
5.4 0.545894 
5.6 0.744425 
5.8 0.943443 
6.0 I.14280 
6.2 1.34239 
6.4 1.54213 
6.6 1.74196 
6.8 1.94185 
7.0 2.14177 
7.2 2.34171 
7.4 2.54166 
7.6 2.74161 

04OOOOOO 
0.0656115 
0.130482 
0.194342 
0.256932 
0.318000 
0.377306 
0.434621 
0.489729 
0.542430 
0.592536 
0.639879 
0.6843 1 I 
0.725702 
0.76395 1 
0.798980 
0.830746 
0.859240 
0.884492 
0.906575 
0.925606 
0.941744 
0.955193 
0.966190 
0.974999 
0.981904 
0.987190 
0,991 I39 
0.994012 
0.996045 
0.997441 
0.99837 1 
0.998967 
0.999335 
0.999550 
0.999666 
0.999720 
0.999736 
0.999729 

0.3294530885 
0.326432 
0.322047 
0.316338 
0.309349 
0~301131 
0.291738 
0.281233 
0.269684 
0.257164 
0.243757 
0.229553 
0.214654 
0.199175 
0. I83245 
0.16701 I 
0.150642 
0. I34323 
0.118259 
0.102668 
0.877707( - 1) 
0.737839( - 1) 
0.609021( - 1) 
0.492856( - I) 
0.390465( -- I) 
0.302400( - 1) 
0,228608(- 1) 
0,168453(--I) 
0.120806(&I) 
0.841788( -2) 
0.568780( -2) 
0.371614(--2) 
0,233715( --2) 
0.140324( ~ 2) 
0.790534( ~ 3) 
0,400607( --- 3) 
0~159173(~3) 
0.128599( -4) 

- 0.748929( - 4) 

In Table 3, the quantities fO, fO” and S; are 
written as square roots in order to specify them 
to high accuracy. 

In Table 3(a-h), the interval in +i is in some 
cases 0.1 and in others O-2. Since the initial 
values of f0 and f,” were specified to ten signifi- 
cant digits. it is expected that these tables are 
accurate to six digits, with the possible exception 
of the values of,f” less than 1.0 x 1O-4 which are 
probably only accurate in the first few significant 
digits. 

7.2 The Imaginary Domain 
It is clear that the case /3 = -1 also contains 

special features in the imaginary domain. By 
means of the same method as used for the real 
domain some numerical solutions have also been 
obtained for this case. However, since they show 
some unexpected features which require fuller 
discussion than is possible here, they will be 
published elsewhere. 

8. SOLUTIONS IN THE REAL DOMAIN FOR 
HIGH VALUES OF /l WHEN f, = 0 

Solutions in the real domain when no mass 
flows through the wall boundary were quoted in 
Paper 7, Evans [3]. They were given to high 
accuracy and were largely taken from calcula- 
tions by Smith [8]. With suitably small intervals 
in the parameter /I, they covered the range from 
the separation point at /3 = -0.198838 to the 
value p = 2. The solution for /I = co, which is 
known in closed form, was also given, but a 
large gap, where no exact solutions were known, 
still remained between /3 =: 2 and fl = x. 

Some interpolated solutions for this region, 

Table 3. Solutions to the velocity equation in the real domain for fi = ~ 1.0 

w 
(25/12)& 
(20/g): 

(g 

(-G 
(10)) 

co 

($2): 
(2/9) f 
(1 /ah 

(2$ 
(3)h 
(8)) 
30 

w 0.41407 
(4/3)6 0.39954 

(20/g)& -- (2/9)k 0.38017 
(S/2): - (l/2)1 0.35026 

(3)” - 1 0.31200 
2 - (2)k 0.26359 

(5)h - (3)h 0.23279 
(IO)1 - (8): 0.16105 

-0.58559 3.4154 0.0 PO.17146 0.68582 
-0.57668 2.8901 0.11534 -0.15963 0.63852 
-0.56672 2.6812 0.17921 PO.14453 0.57812 
-0.55381 2.4954 0.24767 -0.12268 0.49073 
-0~54041 2.3463 0.31200 - 0.097347 0.38939 
-0.52717 2.2224 0.37277 ~ 0.069417 0.27791 
-0.52053 2.1651 040320 -0~054191 0.21676 
- 0.50929 2.0730 0.45552 -0.025937 0.10375 
-0.5 2.0 0.5 0.0 0.0 

3(a) 
3(b) 
3(c) 
3(d) 
3(e) 
3(f) 
3(g) 
3(h) 
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Table 3(a). Solution for /I = - 1, f. = (2)* Table 3(a)-continued 

? f f f” 9 f f ’ f” 

0.0 1.414213562 O.oooooooO OGOOOOO 
0.1 1.41437 OW477240 0.932500( - 1) 
0.2 1.41546 0.0182398 0.174182 
0.3 1.41827 0.0392499 0.244333 
0.4 1.42353 0.066788 1 0.304925 
0.5 1.43182 0.0999477 0.356893 
0.6 144367 0.137902 0400914 
0.7 1.45953 0.179882 0.437457 
0.8 1.47976 0.225155 0.466825 
0.9 1.50465 0.273014 0.489210 
1.0 1.53443 0.322768 0.504737 
1.1 1.56924 0.373736 0.513517 
1.2 1.60919 0.42525 1 0.515690 
1.3 1.65429 0.476661 0.511464 
1.4 1.70450 0.527341 0.501148 
1.5 1.75972 0.576702 0.485170 
1.6 1.81978 0.624204 0.464087 
1.7 1.88448 0.669372 0.438584 
1.8 1.95356 0.711800 0.409455 
1.9 2.02674 0.751171 0.377575 
2.0 2.10369 0.787254 0.343865 
2.1 2.18407 0.819914 0.309249 
2.2 2.26755 0.849103 0.274614 
2.3 2.35378 0.874863 0.240767 
2.4 24424 1 0.897307 0.208406 
2.5 2.53314 0.916613 0.178096 
2.6 2.62564 0.933008 0.150257 
2.7 2.71965 0.946755 0.125158 
2.8 2.81491 0.958136 0.102932 
2.9 2.91121 0.967438 0+35881(-l) 
3.0 3.00834 0.974946 0.670304- 1) 
3.1 3.10615 0.98093 1 0.530853(-l) 
3.2 3.20448 0.985643 0 415238(-l) 
3.3 3.30324 0.989307 0.320838(- 1) 
3.4 3.40232 0.992121 0.244899( - 1) 
3.5 3.50164 0.994257 0.184692(- 1) 
3.6 360115 0.995859 0.137631(-l) 
3.7 3.70080 0.997046 0~101353(-1) 
3.8 3.80055 0.997915 0.737646( - 2) 
3.9 3.90037 0.998544 0.530635(-2) 
4.0 4.00025 0.998994 0.377327(-2) 
4.1 4.10017 0.999312 0,265247( - 2) 
4.2 4.20011 0.999535 0.184344-2) 
4.3 4.30007 0.999689 0.126673(-2) 
4.4 4.40005 0.999794 0.860686(-3) 
4.5 4.50003 0.999865 0.578283(-3) 
4.6 4.60002 0.999912 0.384235(-3) 
4.7 4.70001 0.999944 0.252486( - 3) 
4.8 4.80001 0.999964 0.164091(-3) 
4.9 4.90001 0.999978 0,105478(-3) 
5.0 5moOO 0.999986 0.670630( -4) 
5.1 5.10000 0.999991 0.421765(-4) 
5.2 5.20000 0.999995 0.262385(-4) 
5.3 5.3OOoO 0.999997 0.161475(-4) 
5.4 5.40000 0.999998 0,983062( - 5) 
5.5 5.50000 0.999999 0,592078( - 5) 

5.6 5.64nOO 0.999999 0.352787(-5)- 
5.7 5.70000 1+0000 0.207966( - 5) 
5.8 5~80000 l.OOOOO 0.121289(-5) 
5.9 5.90000 1XlOOOO 0.699822( - 6) 
6.0 6.OOOOO 1+KlOOO 0,399478(-6) 

Table 3(b). Solution for /l = -1, fO = (25/12)a 

7 f f f” 

0.0 1443375672 OWOOOOO 0.288675135 
0.2 144987 0.0683357 0.389597 
0.4 1.47186 0.153951 0.462082 
0.6 1.51224 0.251431 0.508450 
0.8 1.57288 0.355630 0.529311 
1.0 1.65461 0.461482 0.525105 
1.2 1.75726 0.564102 0.497404 
1.4 I.87974 0.659107 0449728 
1.6 2.02016 0.743029 0.387640 
1.8 2.17606 0.813665 0.318092 
2.0 2.34468 0.870246 0.248223 
2.2 2.52326 0.913341 0.184082 
2.4 2.70923 0.944536 0.129714 
2.6 2.90042 0.965999 0.868702(- 1) 
2.8 3.09513 0.980040 0.553227(- 1) 
3.0 3.29209 0.988780 0.335282(- 1) 
3.2 3.49041 0.993959 0,193532(-l) 
3.4 3.68952 0.996885 0.106489(- 1) 
3.6 3.88907 0.998461 0,558998(-2) 
3.8 4.08885 0.99927 1 0,280153(-2) 
4.0 4.28875 0.999669 0.134135(-2) 
4.2 4.48871 0.999856 0.613906(-3) 
4.4 4.68869 0.999940 0.268714( - 3) 
4.6 4.88868 0.999976 0,112537(-3) 
4.8 5.08868 0.99999 1 0,451112(-4) 
5.0 5.28868 0.999997 0~173140(-4) 
5.2 5.48868 0.999999 0,636452(- 5) 
5.4 5.68868 1WOOO 0.224130(-5) 
5.6 5.88868 1mOOO 0.756239(- 6) 
5.8 6.08868 1mOOO 0.244573( ~ 6) 
6.0 6.28868 1mOOO 0.758728( - 7) 

in the form of values of the thickness ratios 
H,, and Hz4, were given in Paper 2. The method 
by which the interpolated solutions were ob- 
tained should have given an accuracy of about 
*0.3 per cent. The present, more accurate 
calculations have shown that the values of H,, 
were all slightly less than 0.1 per cent low, while 
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Table 3(c). Solution fir p = - 1, f. = (20/g)& Table (3d).-continued 

rl f f' f” 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
I.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 
6.4 
6.6 
6.8 
7.0 
7.2 

1.490711985 OtXWOOO 
I.50051 0.0996318 
1.53112 0.207516 
1.58380 0.319738 
1.65902 0.432065 
1.75635 0.540142 
1.87452 0.639889 
2.01152 0.72797 1 
2.16478 0.802221 
2.33143 0.861854 
2.50858 0.907427 
2.69357 0.940542 
2.88412 0.963418 
3.07841 0.978446 
3.27512 0.987838 
3.47330 0.993428 
3.67233 0.996598 
3.87184 0.998313 
4.07160 0.999198 
4.27149 0.999635 
4.47144 0.999841 
4.67142 0.999933 
4.87141 0.999973 
5.07141 0.999990 
5.27141 0.999996 
5.47141 0.999999 
5.67141 1X)OOOO 
5.87141 1mOOO 
6.07141 1XlOOOO 
6.27141 1aOOOO 
6.47141 1WOOO 
6.67141 1woOO 
6.87140 1aOOOO 
7.07140 1mOOO 
7.27140 1aOOOO 
7.47140 1WOOO 
7.67140 1 aOOO0 

0.4714045209 
0.521906 
0.553674 
0.565003 
0.554602 
0.522729 
0.47 1922 
0407076 
0.334773 
0.26205 1 
0.195049 
0.137989 
0.927943( - 1) 
0.593432( - 1) 
0.361153(-l) 
0,209330( - 1) 
0,115653(-l) 
0.609552(-2) 
0,306704(-2) 
0,147424(-2) 
0.677346( ~ 3) 
0.297621(-3) 
0.125118(-3) 
0.503431(-4) 
0.193941(-4) 
0.715539(-5) 
0,252881(-5) 
0.856092(- 6) 
0.277524( - 6) 
0.859445( - 7) 
0.252226( -7) 
0.683622( ~ 8) 
0.176441(-8) 
0.437694( - 9) 
0.104325(-9) 
0.238918( ~ 10) 
0,525725( ~ 11) 

Table 3(d). Solution for b = - I, f0 = (5/2)f 

7 .f f 

0.0 1.581138830 
0.1 1.58466 
0.2 1.59513 
0.3 1.61246 
0.4 1.63651 
0.5 I.66716 
0.6 1.70422 
0.7 1.74750 
0.8 1.79675 
0.9 1.85171 
1.0 I.91204 

0aoooooO 0.7071067810 
0.0701444 0.695952 
0.139199 0.685066 
0.207122 0.673131 
0.273755 0.659103 
0.338847 0642196 
0.402080 0.621873 
0.463098 0.597844 
0.521524 0.570058 
@576990 0.538692 
0.629155 0.504136 

f” 

7 f f’ f” 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
I.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 

1.97742 
2.04746 
2.12178 
2.19998 
2.28165 
2.36639 
2.45382 
2.54356 
2.63529 
2.72869 
2.82347 
2.91940 
3.01625 
3.11384 
3.21201 
3.31065 
3.40964 
3.50890 
3.60836 
3.70798 
3.80771 
3.9075 1 
4.00738 
4.10729 
4.20723 
4.30719 
4.407 I6 
4.50714 
4.60713 
4.70712 
4-80712 
4.907 11 
5eO711 
5.10711 
5.20711 
5.30711 
5.40711 
5.507 11 
5.6071 I 
5.7071 I 
5-807 I 1 
5.90711 
6GO711 
6.10711 
6.207 11 
6.30711 
6.407 11 
6.5071 I 
660711 
6.70111 

0.677729 0.466954 
0.722482 0.427854 
0.763262 0.387632 
0.799999 0.347127 
0.832706 0.307167 
0.861476 0.268520 
0.886476 0.231858 
0.907932 0.197723 
0.926118 0.166513 
0.941341 0.138480 
0.953924 0.113728 
0.964195 0.922376(- 1) 
0.972476 0.738802(- 1) 
0.979069 0.584466(- 1) 
0.984254 0,456707( - 1) 
0.988282 0,352536(-l) 
0.991373 0.268843(- 1) 
0.993717 0,202566(- 1) 
0.995473 0.150817(-l) 
0.996773 0.110967(-l) 
0.997724 0.806936(-2) 
0.998412 0.579994(-2) 
0.998903 0.412085( -2) 
0.99925 I 0.289444( - 2) 
0.999494 0.200997( 2) 
0.999661 0.138005( -2) 
0.999776 0.936932(-- 3) 
0.999853 0.629012(-3) 
0.999905 0.417612(-3) 
0.999939 0.274203( - 3) 
0.999961 0.178066( - 3) 
0.999976 0.114372(--3) 
0.999985 0,726618(-4) 
0.99999 1 0,456625(-4) 
0.999994 0.283856( -4) 
0.999997 0.174556( .-- 4) 
0.999998 0~106191(~4) 
0.999999 0.639102(-5) 
0.999999 0,380536(-5) 
1WOOO 0,224166(--5) 
1GOOOO 0, I30648( ~ 5) 
1mOOO 0.753376(-6) 
1XtOOOO 0.429829(- 6) 
1aOOOO 0.242664( - 6) 
l+OOOO 0.135557(-6) 
1 a0000 0.748920( - 7) 
1TKlOOO 0409228( - 7) 
lGU.MJ 0,220994( - 7) 
1aOOOO 0.117677(-7) 
1@0000 0,617579(-g) 

those of Hz4 were slightly more than 0.1 per cent 
low. The values of the wall gradients fO” ob- 
tained from HI, and Hz4 were also low by some- 
what less than 0.1 per cent. 
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Table 3(e). Solution fir fi = - 1, f. = (3)t 

? f f f” 

0.0 1.732050809 09OOOOOO 1X)OOOOO 
0.1 1.73693 0.0965307 0.932333 
0.2 1.75115 0.186743 0.872987 
0.3 1.77409 0.271295 0.818696 
0.4 1.80523 0.350572 0.767137 
0.5 1.84404 0.424760 0.716725 
0.6 1.89002 0.493922 0.666480 
0.7 1.94266 0.558045 0.615911 
0.8 2.00146 0.617090 0.564923 
0.9 2.06590 0.671023 0.513732 
1.0 2.13549 0.719844 0.462781 
1.1 2.20970 0.763606 0.412657 
1.2 2.28805 0.802425 0.364016 
1.3 2.37003 0.836481 0.317516 
1.4 2.45519 0.866020 0.273757 
1.5 2.54309 0.891341 0.233239 
1.6 2.63333 0.912788 0.196329 
1.7 2.72553 0.930734 0.163253 
1.8 2.81937 O-945569 0.134089 
1.9 2.91456 0.957681 0.108785 
2.0 3.01083 0.967449 0.871747(- 1) 
2.1 3.10798 0.975231 0.690032(- 1) 
2.2 3.20582 0.981354 0.539547(- 1) 
2.3 3.30421 0.986114 0.416775(- 1) 
2.4 3.40301 0.989770 0.318068(-l) 
2.5 3.50213 0.992543 0.239841(- 1) 
2.6 3.60149 0.994623 0.178711(-l) 
2.7 3.70104 0.996164 0.131596(-l) 
2.8 3.80071 0.997293 0.95771 l(-2) 
2.9 3.90049 0.998110 0.688921(-2) 
3.0 4x)0033 0.998694 0.489873(-2) 
3.1 4.10022 0.999107 0.344358(-2) 
3.2 4.20014 0.999396 0.239323(-2) 
3.3 4.30009 0.999596 0.164451(-2) 
3.4 4.40006 0.999732 0.111737(-2) 
3.5 4~50004 0.999825 0.750745(-3) 
3.6 460003 0.999886 0,498826(- 3) 
3.7 4.70002 0.999927 0.327786( - 3) 
3.8 4.80001 0.999954 0.213030(-3) 
3.9 4.90001 0.999971 0.136936(-3) 
4.0 5QOOOO 0.999982 0.870652(-4) 
4.1 51oooO 0.999989 0.547569(-4) 
4.2 5.20000 0.999993 0.340658(-4) 
4.3 5.3oOOO 0.999996 0.209653(-4) 
4.4 5~m 0.999998 0.127645(-4) 
4.5 5.5OOOo 0.999999 0.768854( - 5) 
4.6 5.60000 0.999999 0.458186(-5) 
4.7 5.70000 1aOOOO 0.270162(-5) 
4.8 5.8COOO 1WOOO 0.157630(-5) 
4.9 5.9OOOo l.OOOOO 0.910170(-6) 
5.0 6Wi)OO 1GX)OO 0.520176(-6) 
5.1 6.10000 1WOOO 0.294357(-6) 
5.2 6.20000 1aOOOo 0.165032(-6) 
5.3 6.30000 1aOOOO 0.917210(-7) 
5.4 6.40000 1WOOO 0.506228( - 7) 

Table 3(f). Solution for /3 = - 1, f. = 2 

- - 

? f f f” 

0.0 2oOOOO OGOOOOO 1.414213562 
0.1 2.00678 0.132837 1.24764 
0.2 2.02606 0.250385 1.10692 
0.3 2.05642 0.354829 0.984535 
0.4 2.09664 0447735 0.875475 
0.5 2.14562 0.530258 0.776479 
0.6 2.20238 0603297 0.685526 
0.7 2.26599 0.667592 0601456 
0.8 2.33563 0.723798 0.523692 
0.9 2.41050 0.772533 0.452021 
1.0 2.48990 0.814405 0.386424 
1.1 2.57317 0.850023 0.326957 
1.2 2.65972 0.880002 0.273655 
1.3 2.74901 0.904958 0.226478 
1.4 2.84056 0.925497 0.185280 
1.5 2.93398 0.942205 0.149805 
1.6 3.02890 0.955637 0.119690 
1.7 3.12501 0.966307 0.944916(- 1) 
1.8 3.22208 0.974682 0.737091(-l) 
1.9 3.31989 0.981178 0.568125(- 1) 
2.0 3.41827 0.986156 0.432690( - 1) 
2.1 351708 0.989926 0.325643(- 1) 
2.2 3.61622 0.992748 0,242196(- 1) 
2.3 3~71560 0.994834 0.178025(-l) 
2.4 3.81517 0.996360 0.129337(- 1) 
2.5 3.91486 0.997462 0.928791(-2) 
2.6 4.01465 0.998249 0,659334(-2) 
2.7 4.11450 0.998805 0.462719(-2) 
2.8 4.21441 0.999193 0.321058(-2) 
2.9 4.31434 0.999461 0.220260( - 2) 
3.0 4.41429 0.999643 0.149417(-2) 
3.1 4.51427 0.999767 0.100232(-2) 
3.2 4.61425 0.999849 0.664930(- 3) 
3.3 4.71423 0.999903 0.436251(-3) 
3.4 4.81423 0.999939 0.283080( - 3) 
3.5 4.91422 0.999961 0.181683(-3) 
3.6 5.01422 0.999976 0.115338(-3) 
3.7 5.11422 0.999985 0.724281(-4) 
3.8 5.21422 0.999991 0449918(-4) 
3.9 5.31421 0.999995 0.276486( - 4) 
4.0 5.41421 0.999997 0.168093(-4) 
4.1 5.51421 0.999998 0~101109(-4) 
4.2 5.61421 0.999999 0601766(-5) 
4.3 5.71421 0.999999 0.354414(-5) 
4.4 5.81421 1GOOOO 0.206588( - 5) 
4.5 5.91421 1GOOOO 0.119215(-5) 
4.6 6.01421 1WOOO 0.681340-6) 
4.7 6.11421 1GlOOO 0.385967(-6) 
4.8 6.21421 1aOOOO 0.217023(-6) 
4.9 6.31421 1aOOOO 0.121375(-6) 
5.0 6.41421 1GOOOO 0.677429(-7) 
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In view of the accurate solutions for no mass 
transfer contained in Paper 7, it was felt that the 
remaining gap in the real domain should be filled 
with more accurate data than interpolated 
solutions. 

Table 4 contains such values, the solutions for 
/3 = 1, 2 and co, taken from Paper 7, being in- 
cluded for completeness. Solutions were first 
obtained on a computer using the method 
described in section 5 and Appendix B. How- 
ever, these were found to contain some error, 
which will be discussed below; this error is 
believed to be caused by using too coarse an 
integration interval. Means were found to 
eliminate a large part of it, and Table 4 contains 
corrected values of the functions. 

The values of,f,,” in Table 4 are those obtained 
by trial and error on the computer. They are 

Table 3(g). Srfu/ion for /3 = - I. f. ~~ (5)i 

7 f f' 1’” 

0.0 2.23606797 ‘8 OWOOOO 
0.2 2.26725 0.296193 
0.4 2.34930 0.513207 
0.6 2.46867 0.672057 
0.8 2.61515 0.786140 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

2.78082 
2.95963 
3.14706 
3.33991 
3.53600 
3.73396 
3.93294 
4.13245 
4.33222 

2.2 
2.4 
2.6 
2.8 4.53212 
3.0 4.73208 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 7.53205 
6.0 7.73205 

4.93206 
5.13205 
5.33205 
5.53205 
5.73205 
5.93205 
6.13205 
6.33205 
6.53205 
6.73205 
6.93205 
7.13205 
7.33205 

0.865565 
0.918761 
0.952884 
0.973800 
0.986036 
0.992868 
0.996509 
0.998363 
0.999264 
0.999683 
0.999869 
0.999948 
0.999980 
0.999993 
0.999997 
0.999999 
1GOOOO 
1WOOO 
l+WOOO 
lG!OOO 
1+0000 
1GOOOO 
1,OOOOO 
1XlOOOO 
l+KWOO 
l.OOOOO 

1.732050809 
1.26051 
0.926372 
0.672963 
0.476178 
0.325069 
0.212861 
0.133269 
0,796528( ~ 1) 
0.454247(& 1) 
0.247192(- 1) 
0.128407(& 1) 
0.637055( -2) 
0.302013(-2) 
0.136886(-2) 
0.593436( - 3) 
0,246182(-3) 
0,977635( -4) 
0,371795( -4) 
0,135471(-4) 
0.473319(-5) 
0,158868(G5) 
0.514836( -6) 
0,163486(-6) 
0.529870( - 7) 
0.193739(-7) 
0.931421(-8) 
0.617331(-8) 
0.489061( - 8) 
0.421223( ~ 8) 
0.395722( - 8) 

Tuble 3(h). Solution for ,!I = - 1, fO = (lo)1 

? f f f” 

0.0 
0.2 
0.4 
0.6 
0.8 
I.0 
1.2 
1.4 
I.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 

3.162277660 OGOOOOO 
3.20970 0.434615 
3.32409 

3.65245 
3.83980 
4.03361 

3.47725 

4.23070 
4.42938 
4.6288 1 
4.82858 
5.02848 
5.22845 
5.42843 

5.82843 
6.02843 
6.22843 

5.62843 

6.42843 
6.62843 
6.82843 
7.02843 
7.22843 
7.42843 
7.62843 
7.82843 
8.02843 
8.22843 
8.42843 
8.62843 
8.82843 

0.912546 
0.956377 

0,686573 

0.999962 

0.979112 

0.831423 

0.990405 

0.999987 

0.995773 
0.998214 
0.999276 
0.999719 
0.999895 

0.999996 
0.999999 
0.999999 
1mOOO 
1G)OOO 
1woOO 
1aOOOO 
1QOOOO 
1mOOO 
1aOOOO 
1XKKKKl 
1moOo 
1GIOOO 
1aOOOO 
1GIOOO 
10IOOO 

2.828427126 
1.63345 
0.946194 
0.537362 
0.295398 
0.156123 
0.790724( -- I) 
0.383244( - 1) 
0.177680( - 1) 
0.788010( - 2) 
0.334397( - 2) 
0,135820( --2) 
0.528184( -3) 
0.196738( - 3) 
0.702252( m-4) 
0.240440( -- 4) 
0,791418( --5) 
0,252024( -. 5) 
0~791200+6) 
0.258411( -6) 
0.993131(-7) 
0.520742( -. 7) 
0,370644( - 7) 
0.311436(&7) 
0.279267( ~~ 7) 
0.255180(-7) 
0.233798( ~ 7) 
0.215687(-7) 
0~200711(~~7) 
0.186922( 7) 
0.173875( --7) 

believed to be very accurate since each is the 
better of a pair, one on either side of the correct 
value and differing by only one unit in the last 
significant digit. 

Using the values of,f’ given by the computer, 
the boundary-layer thicknesses 87 and 83 and 
the other functions occurring in Table 4 were 
calculated. Because the solutions are not very 
satisfactory, the distributions of the stream 
function and its gradients are not given in the 
present paper. 

The function E, is a correction to a linear 
approximation for the relationship between F, 
and X, and is defined by the equation: 

Fz = 0.44105 - 5.1604 h, -- E,. (101) 

When the values of E, obtained from the com- 
puter solutions were plotted against l//3, some 
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Table 4. Solutions to the velocity equation for the real domain; fO = 0, j3 large 

397 

2 

: 
5 
7 

10 
20 
co 

l-2325877 064789 
1.6872182 0.49741 
2.043922 0.41902 
2.347284 0.36893 
2.615776 0.33336 
3G83505 0.28514 
3.675215 0.24076 
5.180604 0.17212 
1.1547005 0~7785391 

0.29235 
0.23080 
0.19671 
0.17431 
0.15816 
0.13594 
0.11523 
0.082768 
0.3761614 

2.2161 
2.1552 
2.1301 
2.1165 
2.1077 
2.0975 
2-0893 
2.0796 
2.069694 

0.36035 0.085469 
0.38941 0.10654 
0.40207 0.11609 
040916 0.12154 
0.41371 012507 
0.41918 0.12937 
04235 1 0.13279 
O-42879 0.13701 
0.4343538 0.1414974 

0.0 
-0~10654 
-0.15479 
-0.18230 
-0~20012 
-0.22177 
-0.23902 
-0.26032 
- 0.28299 48 

o-o 
-0.00220 
- 0.00323 
-0GO382 
- OGO426 
- OW476 
-0+5517 
-0GO566 
-0GI614 

Notes: (1) Solutions for fi = 1, 2, m taken from the literature. 
(2) The similar co-ordinates for p = to are different from those for the other values. 

scatter of the points was evident. The points for 
/3 = 1, 2, cc and -4 were on a smooth curve, 
those for /I = 3, 4 and 5 were only slightly dis- 
placed from it and those for fl = 7, 10 and 20 
were a considerable distance away. The solution 
for @ = -4, it will be realized, lies in the 
imaginary domain and was given by Mangler 
[7] (see also Table 1 in Paper 2). 

The values of ES were therefore adjusted by 
drawing the most acceptable smoothed curve on 
this figure and reading off more accurate values. 
By means of these and the accurate values of 
fi‘, the other functions were recalculated. They 
differ from the values first obtained by less than 
one unit in the fourth significant digit. The error 
still remaining in most of the functions is 
believed to be less than three units in the last 
digit quoted. 

9. INTERPOLATED SOLUTIONS FOR INFINITE p 

9.1 General Discussion 
Among the similar solutions given in Paper 2, 

a set corresponding to infinite /I played an 
important role in the inte~olation method em- 
ployed. These were solutions to equation (27) 
with boundary conditions (28) and were ob- 
tained from calculations by Holstein [14]. In 
carrying out the interpolations, asymptotic 
values of thickness ratios for high blowing rates 
as given by Pretsch [4] were used. Since Paper 2 
was written it has been found that these asymp- 
totic values contain an appreciable error. It 

has already been seen in section 4 that the values 
are now known exactly. 

It has also been possible to treat in the same 
way solutions to the other case of infinite 13, 
namely equation (31) with boundary conditions 
(32), again using calculations by Holstein 1141. 

The opportunity has therefore been taken to 
re-examine these solutions and to draw up a new 
set of interpolated values of boundary-layer 
functions. These cover a much wider range of 
mass-transfer rate than the solutions given in 
Paper 2. 

9.2 Solutions by Holstein 
Holstein [14] gave solutions to equation (27), 

with boundary conditions (28), and equation 
(31), with boundary conditions (32), in the form 
of tables of the velocity de,ldt (or deeds) and 
shear stress d”@Jdp (or d2&jdtZ) at intervals in 
the independent variable e (or 0. In some cases 
the values were at regular intervals in the 
independent variable e, in others at regular 
intervals in the velocity de/d& Solutions were 
given for a number of values of the mass-transfer 
parameter k,. The stream function 0 does not 
occur in the differential equation and was there- 
fore not evaluated by Holstein. 

In order to obtain the information required 
in the present work, it was necessary by 
numerical integration of Holstein’s values to 
calculate one of the “similar” bounds-layer 
thicknesses ST or SE, which are now defined in 
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terms of the similar length co-ordinate f. When (b) When the variables are pure imaginary 
the interval in 6 was regular, a straightforward In this case, equation (31) applies and the 
application of Simpson’s rule to values of main-stream velocity distribution is that found 
[I - (de/d[)] supplied the thickness 13:. When along the walls of a straight-walled, diverging 
the interval was regular in d6/dt, and therefore channel. Proceeding in the same way as above, 
irregular in [, the integration procedure was if the value of (1 - @)/e” in the main-stream is 
modified in the following manner. denoted by L, it is found to satisfy: 

(a) When the variables are real 
In this case, equation (27) applies and the 

main-stream velocity distribution is that which 
occurs along the walls of a straight-walled, con- 
verging channel. It is convenient here to use 
primes to denote differentiation with respect to 
the similar distance co-ordinate 5 defined in 
equation (8). In terms of this co-ordinate, the 
displacement thickness ST is defined as: 

S; = ]; (1 - 0’) dt. (102) 

Since de’/dE = 6”, the integration variable in 
this can be changed from 5 to 0’ to give: 

s; zzz J I (I - e’) 
-,-- de’. 

0 e 
(103) 

This form is suitable for integrating Holstein’s 
solutions at regular intervals in 8’, except that 
the value of the integrand in the main-stream 
was not given. In its present form this is in- 
determinate, but let it be denoted by L. On 
differentiation of the numerator and the de- 
nominator and substitution for (0”‘/#‘) from the 
differential equation, it is found that: 

= lim _.____~_ ___ 

f-m k, + (1 - et) (1 + eye”. (lo4) 
Since L now also occurs on the right it must 
satisfy the equation : 

1 

L = &X27 
wm 

and so has the value: 

L _ --ko 31 6% + W2 ___ ~- 
4 

. (106) 

The positive sign preceding the square root is 
appropriate for Holstein’s solutions. 

1 L1 = m&i _-2L, 

and therefore to have the value: 

(107) 

where again the positive sign applies. 
This method of integrating the functions given 

by Holstein is believed to be quite accurate since 
the integrand, when plotted as a function of 0’, 
is only slightly curved and its values at the two 
ends of the range of integration are known 
accurately. By plotting in this way some scatter 
was in fact observed with some of Holstein’s 
values near the main-stream. By using a large 
scale and drawing a smooth curve through the 
most acceptable points, however, this error was 
largely eliminated. 

Values of the functions obtained from Hol- 
stein’s solutions are given in Table 5. In the 
first five solutions the quantities k, and 0:’ 
should be denoted by “barred” quantities since 
thev refer to solutions to equation (31). 

If the values of the thickness ratios H,, and 
Hz4 in Table 5 are examined, their variation with 
the mass-transfer parameter k, is not very 
satisfactory for large values of / k, / or / R, I. 
This is believed to be due to error in the original 
solutions probably brought about by the fact 
that the boundary layer is very thin and the 
integration interval too large. 

It should be noted that no solutions to equa- 
tion (31) which behave like real boundary layers 
exist for values of ) R, j less than 8112. The wall 
shear 8;’ is still quite large for this mass-transfer 
rate so it is not because the boundary layer is 
about to “separate”. What it does mean is that 
only with this minimum amount of suction can a 
boundary layer be maintained along the walls 
of a diverging channel, otherwise the boundary 
condition in the main-stream is contravened. 
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Table 5. Solutions for infinite ,5 

k0 (or l,,) t?,,” (or 8,“) HI2 H24 
%I% 

Y 

- 8* 1.9257 1.8888 06018 - 0.8839 0.1953 
-4 3.5694 1.989 0.5143 - 0.5763 0.04152 
-6 5.7372 1.986 0.5048 - 0.5280 0.01549 
-8 7.8070 2.018 0.4992 - 0.5115 0.008178 
-10 9.8472 1.992 0.5029 - 0.5107 0.005213 

10 10.1474 2.030 0.4950 - 0.4878 - 0.004746 
4 4.3408 2.014 0.4905 - 0.4520 - 0.02555 
2 2.5644 2.022 0.4789 - 0.3735 - 0.06974 

-2 0.4638 2.163 0.3612 1.558 - 1.213 
-4 0.2482 2.218 0.3276 5.279 - 3.484 
-10 0.1000 2.202 0.3106 31.06 - 19.59 

Functions evaluated from solutions given by Holstein [14]. Those in the first 
five lines apply to equation (31), the remainder to equation (27). 

Table 6. Interpolated solutions for infinife B 

Vd, 
Y 

HP4 k. (or k) Be” (or B,“) 

-0.8839 1.8888 06018 
-0.85 19011 0.5885 
-0.80 1.9198 0.5710 
-0.75 1.9369 0.5556 
-0.70 1.9520 0.5420 
-0.65 1.9658 0.5300 
-060 1.9786 0.5190 
-0.55 1.9892 0.5085 
-0.54 1.991 0.5065 
-0.53 1.993 0.5048 
-0.52 1.996 0.5032 
-0.51 1.998 0.5016 
-0.50 2.000 0.5000 
-0.49 2.002 0.4980 
-0.48 2.004 0.4960 
-0.47 2.006 0.4940 
-0.46 2.007 0.4923 
-0.45 2.009 0.4905 
-040 2.018 0.4824 
-0.35 2.026 0.4750 
-0.30 2.034 0.4680 
-0.25 2.042 0.4614 
-0.20 2.048 0.4551 
-0.15 2.054 04492 
-0.10 2.059 0.4439 
-0.05 2.064 0.4389 

2.828 
2.831 
2.856 
2.915 
3.026 
3.226 
3.641 
4.677 
5.104 
5.778 
6.945 
9.635 

9.;2 
6.577 
5.260 
4440 
3.879 
2.421 
1.722 
1.275 
0.9483 
0.6913 
0.4792 
0.2982 
0.1403 

1.926 
1.960 
2.039 
2.159 
2.343 
2.630 
3.149 
4.324 
4.787 
5.501 
6.721 
9.477 

9.:7 
6.796 
5.529 
4.752 
4.228 
2.920 
2.338 
1.989 
1.750 
1.573 
1.435 
1.324 
1.232 

-0.09765 
-0~09014 
-0.07843 
-0.06619 
-0.05352 
- 004046 
-0.02716 
-0.01382 
-0~01120 
- 0.00842 
-0+)0561 
- 0.00280 

0.0 
0.00266 
0.00533 
0.00798 
0.01074 
0.01346 
0.02730 
0.04131 
0.05537 
0.06949 
0.08369 
0.09797 
0.11242 
0.1269 
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Table k-continued 

k, (0~ Lo) Be” (or 8,“) 

0.0 2.06969 0.434354 0.0 1.15470 0.141497 
0.1 2.078 0.4261 -0.2419 I.031 0.1709 
0.2 2.087 0.4192 - 04466 0.936 0.2006 
0.3 2.094 0.4130 - 0.6249 0.8603 0.2305 
0.4 2.101 04068 - 0.7842 0.7975 0.2602 
0.5 2.108 04010 - 0.9286 0.7448 0.2899 
0.6 2.114 0.3960 - 1609 0.7002 0.3198 
0.7 2.120 0.3909 - 1.184 0.6611 0.3496 
0.8 2.126 0.3864 - 1.299 0.6272 0.3795 
0.9 2.131 0.3822 - 1406 0.5972 04095 
1.0 2.137 0.3783 -1.509 0.5707 0.4394 
1.2 2.147 0.3715 - 1.698 0.5257 0.4994 
1.4 2.156 0.3654 -1.872 0.4886 0.5594 
1.6 2.165 0.3603 -2.033 0.4578 0.6194 
1.8 2.172 0.3559 -2.183 0.4317 0.6797 
2.0 2,178 0.3522 - 2.325 0.4094 0.7402 
2.2 2.183 0.3491 - 2.458 0.3901 0.8009 
2.4 2.187 0.3464 - 2.585 0.3732 0.8618 
2.6 2.191 0.3440 - 2.707 0.3581 0.9226 
2.8 2.195 0.3419 ~ 2.824 0.3448 0.9834 
3.0 2.198 0.3400 - 2.936 0.3327 I ,0444 
3.5 2.204 0.3361 -3.199 0.3072 1,197 
4.0 2.209 0.3330 ~ 3442 0.2866 I.350 
4.5 2.213 0.3305 - 3.670 0.2696 I.503 
5.0 2.216 0.3285 -- 3.884 0.2552 1.657 
6 2.221 0.3252 - 4.282 0,232 I 1.964 
I 2.225 0.3227 -4,646 0.2142 2.271 
8 2.229 0.3208 ~ 4.984 0.1998 2.577 
9 2.233 0.3193 -5.301 0.1881 2,883 

10 2.235 0.3182 - 5.599 0.1782 3.190 
20 2.246 0.3126 - 7.995 0.1250 6,258 
K 2.25889 0.306853 7I 0.0 ‘%i 

Solutions in the range -0.8839 < v,S,/v < -0.5 apply to equation (31) for which column 4 gives 

ki and column 5 gives &,“; those in the range -0.5 < v$,/v Q co apply to equation (27) for which 
column 4 gives k, and column 5 gives 00”. 

Referring to equation (log), this means that the 
function L, is real only when 1 k, 1 > 8112. 

9.3 Interpolation 
The solutions contained in Table 5 are quite 

suitable for interpolation since, in addition to 
those quoted, the following three solutions for 
infinite /3 are also known exactly: (i) the case of 
infinite suction, (ii) the case k, = 0 in equation 
(27) (see Paper 7) and (iii) the case of infinite 
blowing treated in section 4.4. 

With the quantity (u,&v) as variable, or its 

reciprocal when considering intensive blowing, 
interpolated values of the thickness ratios HI, and 
Hz4 were therefore obtained and other functions 
calculated from them. The results are given in 
Table 6, where the function F, is not given since 
it is simply -2h,. 

The accuracy of the values in this table is 
about the same as the interpolated solutions 
given in Paper 2; the values of the thickness 
ratios should be better than ho.3 per cent 
everywhere. Where any quantities in this table 
differ from those given in Paper 2, the present 
values are to be preferred. 
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FIG. 2. Intensive blowing: F, as a function of AZ with v,F,/v as mass-transfer parameter. 
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FIG. 3. Intensive blowing: Hcp as a function of A2 with C&/V as mass-transfer parameter. 
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10. VARIATION OF F, AND Ha4 WITH Xa FOR 
INTENSIVE BLOWING 

In the method of boundary-layer analysis 
contained in Papers 1 and 2, curves were 
required showing the variation with the pressure- 
gradient parameter A, of the growth function F2 
and the thickness ratio Hz4. The highest blowing 
rate included in the interpolated solutions of 
Paper 2 was for (v,S,/v) = 3.0. By means of the 
method to be explained below, these curves are 
extended to (u,S,/v) = 20.0 with the results 
shown in Figs. 2 and 3. 

The shapes of the curves showing the variation 
of F, were first obtained by assuming that the 
thickness ratios H,, and Hz4 had the asymptotic 
values for high blowing rates given in Table 1. 
These curves cut the vertical axis, where the 
pressure gradient is zero, at the exact value, 
since it is known that, when the blowing rate is 
large enough, F2 = 2(v,S,/v) along that line. 
For any other pressure gradient, however, these 
preliminary curves were displaced from the 
correct position. 

By interpolation along the lines /3 = 1.0 and 
/3 = cc, their positions were obtained more 
accurately in this region. While retaining the 
same general shape the preliminary curves were 
then displaced so as to pass through the inter- 
polated points. In the final form of the curves 
given in Fig. 2, the accuracy is believed to be 
such that the position of any point is correct to 
within f3 per cent of its distance from the origin. 

Very few exact solutions to the equations occur 
in this region and most of them are shown in 
Fig. 2 with values of the parameter (~,,S,/LJ) 
nearby. 

Curves for H,, shown in Fig. 3 were easier to 
draw, since, on this scale, the origin and inter- 
polated points for ,6 = 1.0 and / = cc were in 
the same straight line for almost all the values of 
(ti,,S,/v) covered. The solution for (v,S,/v) = 4.3 16, 
obtained by Schlichting and Bussman [6], is 
seen to be slightly displaced from the line fi = 1-O 
in Fig. 3. In view of the great difficulty of ob- 
taining exact solutions in this region it is not 
surprising that this solution contains some error.* -___ 

* Note added in proof: A large number of solutions, 
like those for b = 1 given in the present paper, have 
now been computed. They cover a wide range of positive 
and negative /3 with f0 in the range 0 < f, < 3.0. The 
equations for infinite ,8 have also been integrated 
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APPENDIX A 

Boundary-layer Functions for High Rates of Mass 
Transfer 

The results obtained in section 4 are sum- 
marized below. 

(a) intensive suction 
From equation (SO) of the text, the stream 

functionfhas the form: 

f=,fo i_ q -;(I - e+cv). (AlI 

The velocity distribution in the boundary layer 
is: 

and the wall gradient is: 

f0” =fw C-43) 

The other boundary-layer functions have the 
following values : 

HI2 = 2, F2 = A, = 0. J 

(b) Intensive blowing when /3 is not infkite 
From equation (76) of the text the velocity 

distribution is : 

and the dimensionless wall shear is: 

HI4 = 1 - (1 + $1 I&4. (A9) 

The ratio HS4 is related to the pressure gradient 
parameter A, by : 

H2, = $5 A,. (AlO) 
02 

Numerical values of these thickness ratios are 
given in Table 1. 

(c) Intensive bIo~~~ng Cohen /3 is in~n~te 
The stream function has the form: 

0 = - k, In cash - i 
i (Al 1) 

0 

and the velocity distribution is: 

(Al2) 

The thickness ratios have the following values: 

In 2 
HZ, = (I - In 2), HI4 = In 2, HI2 = --~~~. 

(1 - In 2)’ 

6413) 

APPENDIX B 

Solving Equation (18) on a Computer 
With the following definitions: 

PI-f (31) 

y ::=,f’ WI 
yT-;= f” @3) 

equation (18) is reduced to the following set of 
simultaneous first-order differential equations: 
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d7 -- = 1 
Using a second suffix j to denote a particular 

d7 stage, at each stage the following functions 

dp 
are evaluated : 

d7 - --4 W) Si, i = l wl, j, WZ, j, ~3, i, ~4, j> (B13) 

mi, j+r = Aj Si, j - Bi ti, j (B14) 

Wi, j+l = Wi, j + m,,j+l @W 

dr 
- = - pr - /3(1 - q2). 

Ii, j+l = ti, j + Jmi, j+l - Cj Si, j 0316) 

drl 
(B7) 

in which the numerical coefficients Aj, Bj and Cj 
take the following values for the four stages: It should be noted that the quantity s = J;fdT, 

which is important in evaluating solutions to the 
b-equation (see earlier papers in the present 
series) can also be evaluated. Since its gradient 
with respect to 7 is f, this merely means adding 
the equation ds/dq = p to this set. 

Although equation (B4) appears to be trivial, 
the method to be described requires it. Equations 
(B4-7) apply to the real domain; to work in the 
imaginary domain the only change required is to 
alter the sign of the right-hand side of equation 
(B7). 

The initial conditions are : 

rlo =o (W 

PO =fo (B9) 

40 =0 (BlO) 

r. = fo". 0311) 
The set of equations (B4-7) is now solved 
numerically at regular intervals in the variable 7 
by means of the following Runge-Kutta process 
developed by Gill [I 51. Each of the four equa- 
tions is of the form: 

At the end of each fourth stage (j = 3) the 
quantities ti, 4 and wi, 4 obtained from equations 
(B15) and (B16) are retained and used at the 
beginning of the next interval. The quantities 
mi, j+l are used only within a particular stage 
and so are not retained. The quantity wi, 4 is, 
of course, the new value of the function wi. 

The operations within each interval are carried 
out in the following order: 

dwi 
__ = hi (“‘1, Wz, W3, Wq) 
drl 

0312) 

where wi is one of the variables 7, p, q or r, and 
the function hi, written in (B12) as a function of 
the variables wi, represents the right-hand side 
of the relevant equation. 

j=O i = 1, 2, 3, 4 
j=l i-1,2,3,4 
j=2 i = 1, 2, 3, 4 
j = 3 i = 1, 2, 3, 4. 

APPENDIX C 

Let the magnitude of the interval in 7 be E. 
The values of the variables w at the beginning 
of an interval being known, the value of any one 
of them, say wi, at the end of the interval is 
obtained by a routine consisting of four stages. 
The stages all have the same form but each 
emnlovs a different set of numerical coefficients. I _ 

Gradients of the Stream Function 
In boundary-layer theory it is often useful to 

obtain expansions of the stream function, or one 
of its derivatives, about some point either within 
the boundary layer or at its extremities. Ex- 
pansions about the wall have, for example, been 
used in several of the earlier papers in the 
present series. 

To obtain such expansions, many derivatives 
of the stream function are required. Knowing the 

i Aj & Cj 

0 l/2 1 l/2 

1 (1 - l/d21 (1 - 11d2) (1 - l/42) 

2 (1 + llv’2) (1 + l/d21 (1 + l/42) 

3 lb l/3 l/2 

_-____ 
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value of the stream function and its first two The expressions for evaluating derivatives up 
derivatives, the third derivative is obtained to fxv for similar solutions are given below. 
simply by substituting these into the differential In these the negative signs on the left-hand sides 
equation, namely the first expression in the list should be used for the real domain and the 
given below. Derivatives of higher order are then positive signs for the imagina~ domain. In the 
obtained by substituting the lower-order deriva- nomenclature of the present paper these quan- 
tives into expressions obtained by successive tities should be denoted by “barred” quantities 
differentiation of the differential equation. when working in the imaginary domain. 

ff “? =@” + ,k?(l -f’2) 

‘f j-IV =fl”’ + (1 - 2/3)f’.f” 

TfV =#‘IV + (2 - 2/3)f’f”’ + (1 - 28) (f”)Z 

;CfV1 =flV + (3 - 2j?)f’fIV + (4 - 6P)f”f” 

‘-ffVII =gv* + (4 - 2/3)f’fv + (7 - 8,6)f”frv + (4 - 6/I) (.f”‘)2 

rf vrrr =flvr* + (5 - 2j3)f’fVI + (11 - loj3))f”fv + (15 - 2O~)f”‘fIV 

FfIX =fsVXXI + (6 - 2p)f’f VII + (16 - 12fl)f” f VI + (26 - 30&f” f V 

+ (15 - 20/3) (f IVY 

TfX =“Px + (7 - 2)f’f VIII +(22 - 14/3)f"fVI' +(42 ___ 42&f"'fv' 
+ (56 - 7O~)f IVf v 

ifX1 =flf^x + (8 - Z/3) f ‘f= + (29 - 16/I) f “fVII1 + (64 - 5615) f “‘.fV1” 
+ (98 - 112/3)f’vfvI + (56 - 708) (f”3” 

rf xrr =fl-xr +(9 - 2p) f’fx + (37 - 18/3)f" fix + (93 - 72j3).f"'fv1'1 
+ (162 - 168j3)f1vfv11 + (210 - 252/l)fVfV1 

+f XIII =flXII +(I0 - 2/3)f'fXI +(46 - 20~)f"fx + (130 - 90/3)f"'f1s 
+(255 - 2~~)f*Vf~~I + (372 - 420~)f~fv11+(210 - 252~)(fv1>” 

if XIV =flXII* +(I1 - 2/3)f'f"'" +(56 - 22j?)f"fX1+(176 - 110/3)f"'fx 
+ (385 - 33Op)fIV f Xx + (627 - 660/I) f VfVII1 + (792 - 924/3) f v1 f v11 

;tfXV =flXIV -j- (12 - 2fi)f'f XIII + (67 - 24@f”f x11 + (232 - 132p)f”‘f x1 
+ (561 - 440j3)fIVfX + (1012 - 990~)fvfrx 
+ (1419 - 1584~)f~If~11~ + (792 - 924~)(fv11)2. 

Zusammeufassuug-Es werden Probleme der hydrodynamischen Grenzschicht behandelt, fur den 
Fall einheitlicher Stoffwerte und Stofftransport in beliebiger Richtung durch die wandnahe Schicht. 
Zur Nachprtiftmg des asymptotischen Verhaltens der Grenzschichtfunktionen bei grossem Stoff- 
durchsatz dient die “%hnliche” Form der Geschwindi~eits~eichu~. Die Verhgltnisse der Grenz- 
schichtdicken bei intensiver Anblasung HIi,,, H,, und HZp sind tabelliert. 

Die in der Rechenmaschine verwendete Integrationsmethode ist beschrieben und folgende nume- 
rische Losungen sind angegeben: (1) Exakte Liisungen fur /I = 1, den vorderen Staupunkt der 
zweidimensionalen Striimung, wobei der Stoffiibergang-Parameter f0 dreizebn verschiedene Werte 
- 3,0 < f0 9;: 3,0 annabm. (2) Exakte Liisungen fiir j3 = - 1 im reellen Bereich, bei acht Werten von& 
von 1/2 am ‘I’rennpunkt, bis 410 bei asymptotischer Antiherung an das Unterdntckgebiet. (3) 
Liisungen von etwas geringerer Genauigkeit ftir den reellen Bereich ohne Stofftransport, bei grossen 
@-Wet-ten. (4) Int~latio~~s~n ftlr ~~dli~he Werte von.j3 mit Stofft~s~~; dabei sind sowohl 
reelle wie imagimire Werte der Variablen beriicksichtigt. 
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Urn die Abhllgigkeit von F,, des Anwachsens der Geschwindigkeitsgrenzschicht, vom Druck- 
gradienten, und die hderung des Dickenverhlltnisses H,, fiir einen Bereich des Stoffdurchsatzes von 
0 < (o,&/v) < 20,O zu zeigen, sind Kurven angegeben. Ein Anhang bring Formeln zur Auswertung 

hiiherer Ableitungen der Stromfunktion. 

fiHEOTlWEiSS---PaCCMaTpHBaeTCH aanasa 0 J&HEaMH=ieCKOM norpanHsHoM cnoe c ~OCTOHHH~IMR 
@3mecKmm napameTpamB cpegbl np~ nonase (nornolrleaHH) seuecTsa sepea CTeHKy 
06TeKaeMOrOTena.(c~o~o6H~e~)pelueHIlRypaBHeHIl~~BM~eHEz~KCnO~b3y~TC~~~~~O~yYeHll~ 

acmrrToTmecKx4x Bbrpamemti paHee nony4eHHnx BcnoMoraTenbHbIx @~HKI@ (YCJIOBH~IX 

T~JI~HH norpamisHor0 c~10x) npa 6onbmnx ~J~OTHOCTIIX nonepesHor0 noToKa seqecrsa. 
AaHnTa6naqbI BemmiH Hl4, HI, II Hz4 AJISI 3HamTenbHbIX MHTeHCMBHOCTefi no~aBaeMoro 

sepe3 CTeHKy BeUeCTBa. 

OIIllCaH MeTOH HHTerpHpOBzuIWl ypaBHeHMH Ha W&THO-peIIIaIOWeM npn6ope M AaHbl 
cnegymqtie YmneHHbre perrremm: 

(1) TosHbIe peLUeHIlFl &WI ,8 = 1 (IIepeAHHH KpHTH'JeCKafI T09Ka AByXMepHOrO IlOTOKa) M 

fo = -3,0 (0,5)3,0 (BCerO TpMHaAqaTb 3HaYeHEi); 

(2) TorHbIe peIUeHPiJ4 AJIH fl= --1 EI BOCbMH 3HaqeHd fo OT 42 B T09Ke OTpbIBa A0 

BeJlINllHbI ~\/20,COOTBeTCTByIO~efi aCBMIITOTI4YeCKOMyOTCaCbIBaHPIIo; 

(3) HeCKOJIbKO yCTyIIaIOlr(Ke IIpeAbIAyUKM II0 TOqHOCTH pelIIeHI4R B JJefiCTBIITeJbHOfi 

o6zacTn npK oTC~TCTBKH MaCCOO6MeHa M 6onbwux 3HaqeHmX 8; 

(4) klHTepIIOJIHpOBaHHESe peIUeHWI IIpH p = 00 II HaJlWWIM MaCCOO6MeHa. B 3Ty COBOKy- 

IIHOCTb BXOAFIT KaK AefiCTBHTeJIbHbIe,TaK I1 MHMMbIe 3HaYeHkIH IIepeMeHHbIX. 

AaHbrrpa@KK ~pK~b~x,KoTopb~e noKaablBatoT~aMeHeme@y~~qaa F.~,xapa~~ep1~3yro~eli 
TeMn HapacTaHuR: norpamisHor0 CJIOFI, II TOJI~HH~I Hz4 np~ paanawmx rpanMeHTax 

AaBJIeHEIH, KOrxa llHTeHC&iBHOCTb MaCCOO6MeHa AeHtMT B IIpeAeJIaX 0 < (Vo62/4 < 20,0. B 
IIpMJIOHteHZlEi AaIOTCFI #OpMyJIbI JUIH paC'J@Ta lIpOH3BOAHblX 6onee BbICOKMX IIOpHgKOB OT 

$~HK~HK ToKa. 


